Brain imaging and genetic studies link thinking patterns to addiction

December 25, 2007

Scientists have for the first time identified brain sites that fire up more when people make impulsive decisions. In a study comparing brain activity of sober alcoholics and non-addicted people making financial decisions, the group of sober alcoholics showed significantly more "impulsive" neural activity.

The researchers also discovered that a specific gene mutation boosted activity in these brain regions when people made impulsive choices. The mutation was already known to reduce brain levels of the neurotransmitter dopamine. The newly found link involving the gene, impulsive behavior and brain activity suggests that raising dopamine levels may be an effective treatment for addiction, the scientists say.

The research is reported in the Dec. 26, 2007 issue of the "Journal of Neuroscience."

Lead scientist is Charlotte Boettiger, PhD, assistant professor of psychology at the University of North Carolina at Chapel Hill. Boettiger led the research as a scientist at UCSF's Ernest Gallo Clinic and Research Center. Senior author is Howard Fields, MD, PhD, a UCSF professor of neurology and an investigator in the Gallo Center. He also serves as director of the UCSF Wheeler Center for the Neurobiology of Addiction.

"Our data suggest there may be a cognitive difference in people with addictions," Boettiger said. "Their brains may not fully process the long-term consequences of their choices. They may compute information less efficiently."

"What's exciting about this study is that it suggests a new approach to therapy. We might prescribe medications, such as those used to treat Parkinson's or early Alzheimer's disease, or tailor cognitive therapy to improve executive function" she added.

"I am very excited about these results because of their clinical implications," Fields said. "The genetic findings raise the hopeful possibility that treatments aimed at raising dopamine levels could be effective treatments for some individuals with addictive disorders."

The scientists used functional magnetic resonance imaging, or fMRI, to image brain activity while subjects were faced with a hypothetical scenario: choose less money now, or more money later.

Boettiger recruited 24 subjects:19 provided fMRI data, 9 were recovering alcoholics in abstinence and 10 had no history of substance abuse. Another five were included in the genotyping analysis.

At the fMRI research facility at the University of California, Berkeley, financial decision tasks measured rational thinking and impulsivity. Sober alcoholics chose the "now" reward almost three times more often than the control group, reflecting more impulsive behavior.

While decisions were being made, the imaging detected activity in the posterior parietal cortex, the dorsal prefrontal cortex, the anterior temporal lobe and the orbital frontal cortex. People who sustain damage to the orbital frontal cortex generally suffer impaired judgment, manage money poorly and act impulsively, the scientists noted.

The study revealed reduced activity in the orbital frontal cortex in the brains of subjects who preferred "now" over "later," most of whom had a history of alcoholism.

The orbital frontal cortex activity may be a neural equivalent of long-term consequences, Fields said.

"Think of the orbital frontal cortex as the brakes," Boettiger explained. "With the brakes on, people choose for the future. Without the brakes they choose for the short-term gain."

The dorsal prefrontal cortex and the parietal cortex often form cooperative circuits, and this study found that high activity in both is associated with a bias toward choosing immediate rewards.

The frontal and parietal cortexes are also involved in working memory - being able to hold data in mind over a short delay. When asked to choose between $18 now or $20 in a month, the subjects had to calculate how much that $18 (or what it could buy now) would be worth in a month and then compare it to $20 and decide whether it would be worth the wait.

The parietal cortex and the dorsal prefrontal cortex were much more active in people unwilling to wait. This could mean, Boettiger said, that the area is working less efficiently in those people.

The researchers also focused on a variant of a gene called COMT. The mutation is associated with lower dopamine levels, and the study showed that people with two copies of this allele (resulting in the lowest dopamine levels) had significantly higher frontal and parietal activity and chose "now" over "later" significantly more often.

"We have a lot to learn," Boettiger said. "But the data takes a significant step toward being able to identify subtypes of alcoholics, which could help tailor treatments, and may provide earlier intervention for people who are at risk for developing addictions."

The bigger picture, she added, is that her study provides more evidence that addiction is a disease, something even some of her peers don't yet believe.

"It's not unlike chronic diseases, such as diabetes," she said. "There are underlying genetic and other biological factors, but the disease is triggered by the choices people make."

"It wasn't that long ago that we believed schizophrenia was caused by bad mothers and depression wasn't a disease. Hopefully, in 10 years, we'll look back and it will seem silly that we didn't think addiction was a disease, too."
-end-
Co-authors on the paper are: Jennifer Mitchell, Vanessa Tavares, Margaret Roberston and Geoff Joslyn at the Gallo Center, and Mark D'Esposito at the University of California, Berkeley.

The research was supported by the U.S. Department of Defense and the UCSF Wheeler Center for the Neurobiology of Addiction.

UCSF is a leading university dedicated to defining health worldwide through advanced biomedical research, graduate level education in the life sciences and health professions, and excellence in patient care.

UCSF's Gallo Clinic and Research Center is a preeminent academic center for the study of the biological basis of alcohol and substance abuse. More information is available at http://www.galloresearch.org/site/gallo/

CONTACT INFORMATION:

Charlotte Boettiger can be reached until 5 p.m., Dec. 21 at (919) 962-2119, and thereafter, except Dec. 25, at (415) 336-2055.

Howard Fields can be reached at hlf@phy.ucsf.edu ; (530) 544 9308.

UNC News Services: contact Clinton Colmenares at (919) 843-1991, clinton_colmenares@unc.edu

UCSF News Services: contact Wallace Ravven at (415) 476-2557, wravven@pubaff.ucsf.edu

University of California - San Francisco

Related Working Memory Articles from Brightsurf:

Musical training can improve attention and working memory in children - study
Musically trained children perform better at attention and memory recall and have greater activation in brain regions related to attention control and auditory encoding.

A revised map of where working memory resides in the brain
Findings from genetically diverse mice challenge long-held assumptions about how the brain is able to briefly hold onto important information.

Playing video games as a child can improve working memory years later
UOC research reveals cognitive changes can be found even years after people stop playing

Visual working memory is hierarchically structured
Researchers from HSE University and the University of California San Diego, Igor Utochkin and Timothy Brady, have found new evidence of hierarchical encoding of images in visual working memory.

Couldn't socially distance? Blame your working memory
Whether you decided to engage in social distancing in the early stages of COVID-19 depended on how much information your working memory could hold.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

They remember: Communities of microbes found to have working memory
Biologists studying communities of bacteria have discovered that these so-called simple organisms feature a robust capacity for memory.

Researchers find key to keep working memory working
Working memory, the ability to hold a thought in mind even through distraction, is the foundation of abstract reasoning and a defining characteristic of the human brain.

Slower growth in working memory linked to teen driving crashes
Research into why adolescent drivers are involved in motor vehicle crashes, the leading cause of injury and death among 16- to 19-year-olds in the United States, has often focused on driving experience and skills.

Are differences in working memory development associated with crashes involving young drivers?
This study of 84 young drivers looked at the association between motor vehicle crashes and differences in the development of working memory, which is critical to awareness of hazards while driving.

Read More: Working Memory News and Working Memory Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.