Sea snails help scientists explore a possible way to enhance memory

December 25, 2011

Efforts to help people with learning impairments are being aided by a species of sea snail known as Aplysia californica. The mollusk, which is used by researchers to study the brain, has much in common with other species including humans. Research involving the snail has contributed to the understanding of learning and memory.

At The University of Texas Health Science Center at Houston (UTHealth), neuroscientists used this animal model to test an innovative learning strategy designed to help improve the brain's memory and the results were encouraging. It could ultimately benefit people who have impairments resulting from aging, stroke, traumatic brain injury or congenital cognitive impairments.

The proof-of-principle study was published on the Nature Neuroscience website on Dec. 25. The next steps in the research may involve tests in other animal models and eventually humans.

The strategy was used to identify times when the brain was primed for learning, which in turn facilitated the scheduling of learning sessions during these peak periods. The result was a significant increase in memory.

"We found that memory could be enhanced appreciably," said John H. "Jack" Byrne, Ph.D., senior author and chair of the Department of Neurobiology and Anatomy at the UTHealth Medical School.

Building on earlier research that identified proteins linked to memory, the investigators created a mathematical model that tells researchers when the timing of the activity of these proteins is aligned for the best learning experience.

Right now, the scheduling of learning sessions is based on trial and error and is somewhat arbitrary. If the model proves effective in follow-up studies, it could be used to identify those periods when learning potential is highest.

"When you give a training session, you are starting several different chemical reactions. If you give another session, you get additional effects. The idea is to get the sessions in sync," Byrne said. "We have developed a way to adjust the training sessions so they are tuned to the dynamics of the biochemical processes."

Two groups of snails received five learning sessions. One group received learning sessions at irregular intervals as predicted by a mathematical model. Another group received training sessions in regular 20-minute intervals.

Five days after the learning sessions were completed, a significant increase in memory was detected in the group that was trained with a schedule predicted by a computer. But, no increase was detected in the group with the regular 20-minute intervals.

The computer sorted through 10,000 different permutations in order to determine a schedule that would enhance memory.

To confirm their findings, researchers analyzed nerve cells in the brain of snails and found greater activity in the ones receiving the enhanced training schedule, said Byrne, the June and Virgil Waggoner Chair of Neurobiology and Anatomy at UTHealth.

"This study shows the feasibility of using computational methods to assist in the design of training schedules that enhance memory," Byrne said.
-end-
Other contributors from the UTHealth Department of Neurobiology and Anatomy include lead authors Yili Zhang, Ph.D., research fellow, and Rong-Yu Liu, Ph.D., senior research scientist, as well as George A. Heberton, medical student; Paul Smolen, Ph.D., assistant professor; Douglas A. Baxter, Ph.D., professor; and Len Cleary, Ph.D., professor.

The study, which is titled "Computational Design of Enhanced Learning Protocols," received support from the National Institutes of Health and the Keck Center National Library of Medicine Training Program in Biomedical Informatics of the Gulf Coast Consortia.

University of Texas Health Science Center at Houston

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.