NIAID researchers show how promising TB drug works

December 26, 2005

Scientists from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, have determined how a promising drug candidate attacks the bacterium that causes tuberculosis (TB). Published online this week in Proceedings of the National Academy of Sciences, the finding may help scientists optimize the drug candidate, PA-824, which targets Mycobacterium tuberculosis (M. tb).

"PA-824, now in early stage clinical trials, holds promise for shortening the TB treatment regimen, which is currently cumbersome and lengthy," says NIAID Director Anthony S. Fauci, M.D. "This new finding will allow a streamlined approach for making improved versions of the drug."

"Previously, we were flying blind in trying to optimize PA-824 in a rational way because we didn't know which M. tb protein was the target of PA-824's action," says NIAID scientist Clifton Barry, III, Ph.D., who headed the research team.

In preclinical testing, PA-824 showed evidence of being effective against both actively dividing and slow-growing M. tb, giving rise to optimism that the compound may be useful in treating both active and latent TB. (For information about the first clinical trial of PA-824, see June 14, 2005, NIAID press release: http://www3.niaid.nih.gov/news/newsreleases/2005/tb_pa_824.htm.)

PA-824 must be chemically activated in the bacterium before it exerts its anti-tubercular effect, notes Dr. Barry. Earlier research had sketched out the first few steps in this process, but Dr. Barry and his colleagues wanted to pinpoint the precise protein that binds PA-824 and transforms it into a lethal molecule for TB.

The scientists approached the problem indirectly by searching for M. tb mutants that resisted the killing power of PA-824. The team confirmed previous research suggesting that resistance usually occurs when M. tb lacks components called FGD1 and F420, neither of which interacts directly with the drug.

Next, the investigators screened for PA-824-resistant M. tb that retained sensitivity to a close relative of PA-824. Within this subgroup of PA-824-resistant bacteria, the team identified those mutant strains with FGD1 and F420. The investigators reasoned that resistance to PA-824 in mutants possessing FGD1 and F420 must be due to a mutation in the M. tb protein that directly interacts with PA-824.

But determining exactly which of M. tb's thousands of proteins was changed in these mutants proved difficult, says Dr. Barry. Conventional genetic techniques for comparing normal and mutant strains of M. tb failed, so the team turned to a specially modified microarray-based technique, called comparative genome sequencing, developed by NimbleGen Systems, Inc. (Madison, WI). This was the first time the technique has been used to identify a protein involved in TB drug resistance, notes Dr. Barry.

Using the NimbleGen technique, which effectively re-sequences the entire genome of the bacterium, the scientists quickly pinpointed the protein altered in the PA-824-resistant mutant strains of M. tb. In the past, such a complete genome comparison might have taken many months of work; this new technology enables scientists to zero in on the specific genetic difference between mutant and normal bacterial strains in just days, says Dr. Barry.

The scientists found a total of four PA-824-resistant mutant strains: two lacked the newly described M. tb protein altogether, while the remaining two mutants evidently acquired resistance to PA-824 through a mutation that made the protein unable to bind to the drug, Dr. Barry says.

With the discovery of the specific protein that interacts with PA-824, Dr. Barry and colleagues, including researchers at the Novartis Institute for Tropical Diseases in Singapore, have information they can use to produce improved PA-824 relatives and accelerate the pace of new TB drug development.
-end-
NIAID is a component of the National Institutes of Health, an agency of the U.S. Department of Health and Human Services. NIAID supports basic and applied research to prevent, diagnose and treat infectious diseases such as HIV/AIDS and other sexually transmitted infections, influenza, tuberculosis, malaria and illness from potential agents of bioterrorism. NIAID also supports research on transplantation and immune-related illnesses, including autoimmune disorders, asthma and allergies.

Reference: UH Manjunatha et al. Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences (2005) DOI: 10.1073/pnas.0508392102.

News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

NIH/National Institute of Allergy and Infectious Diseases

Related Tuberculosis Articles from Brightsurf:

Scientists find new way to kill tuberculosis
Scientists have discovered a new way of killing the bacteria that cause tuberculosis (TB), using a toxin produced by the germ itself.

Blocking the iron transport could stop tuberculosis
The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply.

Tuberculosis: New insights into the pathogen
Researchers at the University of W├╝rzburg and the Spanish Cancer Research Centre have gained new insights into the pathogen that causes tuberculosis.

Unmasking the hidden burden of tuberculosis in Mozambique
The real burden of tuberculosis is probably higher than estimated, according to a study on samples from autopsies performed in a Mozambican hospital.

HIV/tuberculosis co-infection: Tunneling towards better diagnosis
1.2 million people in the world are co-infected by the bacteria which causes tuberculosis and AIDS.

Reducing the burden of tuberculosis treatment
A research team led by MIT has developed a device that can lodge in the stomach and deliver antibiotics to treat tuberculosis, which they hope will make it easier to cure more patients and reduce health care costs.

Tuberculosis: Commandeering a bacterial 'suicide' mechanism
The bacteria responsible for tuberculosis can be killed by a toxin they produce unless it is neutralized by an antidote protein.

A copper bullet for tuberculosis
Tuberculosis is a sneaky disease, and the number one cause of death from infectious disease worldwide.

How damaging immune cells develop during tuberculosis
Insights into how harmful white blood cells form during tuberculosis infection point to novel targets for pharmacological interventions, according to a study published in the open-access journal PLOS Pathogens by Valentina Guerrini and Maria Laura Gennaro of Rutgers New Jersey Medical School, and colleagues.

How many people die from tuberculosis every year?
The estimates for global tuberculosis deaths by the World Health Organisation (WHO) and the Institute for Health Metrics and Evaluation (IHME) differ considerably for a dozen countries, according to a study led by ISGlobal.

Read More: Tuberculosis News and Tuberculosis Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.