Fight against hay fever and other allergies helped by new immune system discovery

December 26, 2007

A mechanism which can lead to hay fever and other allergic reactions, by preventing the immune system from regulating itself properly, has been discovered by scientists. Researchers hope their finding, published today (Thursday 27 December 2007) in the journal PLoS Biology, will allow therapies to be developed that treat allergies by stopping this mechanism.

The new research shows that a gene known as GATA-3 can block the development of regulatory T-cells in the immune system by locking another gene. This gene, FOXP3, is key to regulatory T cells and when it is blocked new regulatory T cells stop being produced.

The scientists, from Imperial College London, the Swiss Institute of Allergy and Asthma Research in Davos, Switzerland, and other international institutions, hope that if they can develop therapies to stop FOXP3 being blocked, they can ensure that regulatory T cells are free to work normally.

Regulatory T cells are believed to be vital for averting allergic reactions in healthy individuals because they keep the other cells in check, suppressing pro-allergic cells known as Th2 cells and stopping the immune system from needlessly attacking the body.

In people with allergies, some types of cells in the immune system, particularly the Th2 cells, wrongly identify a particular allergen, such as pollen, as being dangerous. Whenever the person encounters this allergen again, these cells promote the production of antibodies to attack it, causing an allergic reaction.

Dr Carsten Schmidt-Weber, the principal investigator on the research from the National Heart and Lung Institute at Imperial College London, said: "This finding will help us to understand how healthy individuals are able to tolerate allergens and what we need to do to re-induce tolerance in the immune systems of patients with allergies. We hope that we will soon be able to help not only patients suffering from single allergies, but also those with multiple ones - the atopic patients."

The researchers reached their conclusions by analysing the genes related to regulatory T-cells and analysing how they interacted. They confirmed their findings by using mouse models to show that mice which were genetically engineered to express the GATA-3 gene in all T cells showed dramatic defects in the production of regulatory T-cells.

Dr Schmidt-Weber and his colleague Professor Stephen Durham, also from the National Heart and Lung Institute at Imperial College, hope the new findings will eventually lead to new, more effective treatments for hayfever and other allergies, to be used in combination with existing immunotherapies. They hope such treatments could help prevent hay fever and allergic asthma from reaching epidemic proportions.
-end-
This research was funded by the Swiss National Science Foundation, the Ehmann Foundation Chur, the Saurer Foundation Zurich and Swiss Life Zurich.

Imperial College London

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.