OSU helps decode strawberry genome in bid to improve fruit

December 26, 2010

CORVALLIS, Ore. - Researchers at Oregon State University have helped sequence the genome of a wild strawberry, laying the groundwork for genetic improvements to related fruits like apples, peaches and pears.

The advance was published today in the journal Nature Genetics.

"This will accelerate research that will lead to improved crops, particularly commercial strawberries," said OSU plant molecular biologist Todd Mockler, one of the lead researchers. "It could lead to fruit that resists pests, smells better, tolerates heat, requires less fertilizer, has a longer shelf life, tastes better or has an improved appearance."

An international team of more than 70 researchers, 13 of whom are at OSU, identified 34,809 genes on the seven chromosomes in the woodland strawberry known as Fragaria vesca.

They chose the diminutive perennial because it's commonly used in research, is easy to breed, grows quickly and has a small genome. Additionally, it shares a substantial number of genes with apples, peaches, cherries, plums, and commercially cultivated strawberries - a crop that generated $12.9 million in gross sales for Oregon's farmers in 2009, according to a report by the OSU Extension Service.

As part of their findings, the scientists identified genes that they think might be responsible for some of the berry's characteristics like flavor, aroma, nutritional value, flowering time and response to disease. Knowing what individual genes do will allow researchers to breed crops for those specific traits. And in the case of tree fruits, they won't have to wait years to see if those traits actually show up in the fruit. For example, with molecular breeding they would be able to cross a high-yielding pear tree with one that resists a certain fungal disease, and they'd be certain that the desired genes are actually present.

The woodland strawberry is the smallest plant genome to be sequenced other than Arabidopsis thaliana, a small flowering plant in the mustard family, because it has only about 210 million base pairs, Mockler said. Base pairs are the molecules known as adenine, cytosine, guanine and thymine that form a double-stranded DNA helix.

In addition to Mockler, the OSU part of the research was led by Pankaj Jaiswal, Aaron Liston, Sushma Naithani and Nahla Bassil, a plant geneticist with the U.S. Department of Agriculture who holds a courtesy appointment at OSU. Jaiswal's lab assigned functions to about two-thirds of the strawberry's genes. Liston compared the chromosomal locations of 389 genes that the strawberry shares with peaches and found support for the hypothesis that the rose family originally had nine chromosomes. Naithani's lab predicted biochemical functions for various genes, and Liston and Bassil helped assemble the genome for the strawberry's chloroplasts, an organelle that makes sugar and starches through photosynthesis.

The strawberry work is just the latest advance in a series of genome sequencing projects at OSU. In collaboration with experts in other states, Mockler's lab is assembling the genome for the endangered snow leopard in a conservation effort aimed at improving captive breeding programs in zoos and restoring its numbers. His lab is also working with Bassil to sequence the genomes of three more kinds of strawberries as well as various varieties of apples, cherries, peaches, blueberries and black raspberries.

Mockler's lab is also sequencing the genomes of eight hazelnut varieties, a South American carnivorous plant known as Genlisea aurea, and duckweed, a tiny plant that looks like pond scum and may have potential as a source of biofuel.

Meanwhile, Liston is sequencing the genome for milkweed, and Jaiswal, who helped create a database of plant genomes, is trying to find genes that control flowering time in rice and corn.

Mockler was part of a global team that sequenced the genome of the wild grass Brachypodium distachyon, which scientists hope will serve as a model for improving some grass and cereal crops.
-end-
Note to Editors: The following is additional contact information for some of the OSU researchers involved in sequencing the strawberry's genome:

Pankaj Jaiswal, 541-737-8471 jaiswalp@science.oregonstate.edu
Aaron Liston, 541-737-5301, listona@science.oregonstate.edu
Sushma Naithani, 541-737-5462, naithans@hort.oregonstate.edu
Nahla Bassil, 541-738-4214, bassiln@hort.oregonstate.edu

The following photos are available for use in the media:

Oregon State University

Related Genome Articles from Brightsurf:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.

Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.

A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.

Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.

A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.

How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.

Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.

Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.

Read More: Genome News and Genome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.