Over 65 million years North American mammal evolution has tracked with climate change

December 26, 2011

PROVIDENCE, R.I. -- History often seems to happen in waves - fashion and musical tastes turn over every decade and empires give way to new ones over centuries. A similar pattern characterizes the last 65 million years of natural history in North America, where a novel quantitative analysis has identified six distinct, consecutive waves of mammal species diversity, or "evolutionary faunas." What force of history determined the destiny of these groupings? The numbers say it was typically climate change.

"Although we've always known in a general way that mammals respond to climatic change over time, there has been controversy as to whether this can be demonstrated in a quantitative fashion," said Brown University evolutionary biology Professor Christine Janis. "We show that the rise and fall of these faunas is indeed correlated with climatic change - the rise or fall of global paleotemperatures - and also influenced by other more local perturbations such as immigration events."

Specifically, of the six waves of species diversity that Janis and her Spanish collaborators describe online this week in the Proceedings of the National Academy of Sciences, four show statistically significant correlations with major changes in temperature. The two transitions that show a weaker but still apparent correlation with the pattern correspond to periods when mammals from other continents happened to invade in large numbers, said Janis, who is the paper's senior and second author.

Previous studies of the potential connection between climate change and mammal species evolution have counted total species diversity in the fossil record over similar time periods. But in this analysis, led by postdoctoral scholar Borja Figueirido, the scientists asked whether there were any patterns within the species diversity that might be significant. They were guided by a similar methodology pioneered in a study of "evolutionary faunas" in marine invertebrates by Janis' late husband Jack Sepkoski, who was a paleontologist at the University of Chicago.

What the authors found is six distinct and consecutive groupings of mammal species that shared a common rise, peak and decline in their numbers. For example, the "Paleocene fauna" had largely given way to the "early-middle Eocene fauna" by about 50 million years ago. Moreover, the authors found that these transfers of dominance correlated with temperature shifts, as reflected in data on past levels of atmospheric oxygen (determined from the isotopes in the fossilized remains of deep sea microorganisms).

By the numbers, the research showed correlations between species diversity and temperature change, but qualitatively, it also provided a narrative of how the traits of typical species within each wave made sense given the changes in vegetation that followed changes in climate. For example, after a warming episode about 20 million years in the early Miocene epoch, the dominant vegetation transitioned from woodland to a savannah-like grassland. It is no surprise, therefore, that many of the herbivores that comprised the accompanying "Miocene fauna" had high-crowned teeth that allowed them to eat the foods from those savannah sources.

To the extent that the study helps clarify scientists' understanding of evolution amid climate changes, it does not do so to the extent that they can make specific predictions about the future, Janis said. But it seems all the clearer that climate change has repeatedly had meaningful effect over millions of years.

"Such perturbations, related to anthropogenic climatic change, are currently challenging the fauna of the world today, emphasizing the importance of the fossil record for our understanding of how past events affected the history of faunal diversification and extinction, and hence how future climactic changes may continue to influence life on earth," the authors wrote in the paper.
-end-
In addition to Janis and Figueirido at Brown, the other authors are Juan Perez-Claros and Paul Palmqvist at the University of Malaga and Miguel De Renzi at the University of Valencia in Spain. Figueirido is also affiliated with Malaga.

Grants from the Fulbright program, the Bushnell Foundation (to Brown) and the Spanish Ministry of Science and Innovation funded the research.

Brown University

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.