Rock And Rho: Proteins that help cancer cells groove

December 26, 2013

Biologists at The Johns Hopkins University have discovered that low oxygen conditions, which often persist inside tumors, are sufficient to initiate a molecular chain of events that transforms breast cancer cells from being rigid and stationery to mobile and invasive. Their evidence, published online in Proceedings of the National Academy of Sciences on Dec. 9, underlines the importance of hypoxia-inducible factors in promoting breast cancer metastasis.

"High levels of RhoA and ROCK1 were known to worsen outcomes for breast cancer patients by endowing cancer cells with the ability to move, but the trigger for their production was a mystery," says Gregg Semenza, M.D., Ph.D., the C. Michael Armstrong Professor of Medicine at the Johns Hopkins University School of Medicine and senior author of the article. "We now know that the production of these proteins increases dramatically when breast cancer cells are exposed to low oxygen conditions."

To move, cancer cells must make many changes to their internal structures, Semenza says. Thin, parallel filaments form throughout the cells, allowing them to contract and cellular "hands" arise, allowing cells to "grab" external surfaces to pull themselves along. The proteins RhoA and ROCK1 are known to be central to the formation of these structures.

Moreover, the genes that code for RhoA and ROCK1 were known to be turned on at high levels in human cells from metastatic breast cancers. In a few cases, those increased levels could be traced back to a genetic error in a protein that controls them, but not in most. This activity, said Semenza, led him and his team to search for another cause for their high levels.

What the study showed is that low oxygen conditions, which are frequently present in breast cancers, serve as the trigger to increase the production of RhoA and ROCK1 through the action of hypoxia-inducible factors.

"As tumor cells multiply, the interior of the tumor begins to run out of oxygen because it isn't being fed by blood vessels," explains Semenza. "The lack of oxygen activates the hypoxia-inducible factors, which are master control proteins that switch on many genes that help cells adapt to the scarcity of oxygen." He explains that, while these responses are essential for life, hypoxia-inducible factors also turn on genes that help cancer cells escape from the oxygen-starved tumor by invading blood vessels, through which they spread to other parts of the body.

Daniele Gilkes, Ph.D., a postdoctoral fellow and lead author of the report, analyzed human metastatic breast cancer cells grown in low oxygen conditions in the laboratory. She found that the cells were much more mobile in the presence of low levels of oxygen than at physiologically normal levels. They had three times as many filaments and many more "hands" per cell. When the hypoxia-inducible factor protein levels were knocked down, though, the tumor cells hardly moved at all. The numbers of filaments and "hands" in the cells and their ability to contract were also decreased.

When Gilkes measured the levels of the RhoA and ROCK1 proteins, she saw a big increase in the levels of both proteins in cells grown in low oxygen. When the breast cancer cells were modified to knock down the amount of hypoxia-inducible factors, however, the levels of RhoA and ROCK1 were decreased, indicating a direct relationship between the two sets of proteins. Further experiments confirmed that hypoxia-inducible factors actually bind to the RhoA and ROCK1 genes to turn them on.

The team then took advantage of a database that allowed them to ask whether having RhoA and ROCK1 genes turned on in breast cancer cells affected patient survival. They found that women with high levels of RhoA or ROCK1, and especially those women with high levels of both, were much more likely to die of breast cancer than those with low levels.

"We have successfully decreased the mobility of breast cancer cells in the lab by using genetic tricks to knock the hypoxia-inducible factors down," says Gilkes. "Now that we understand the mechanism at play, we hope that clinical trials will be performed to test whether drugs that inhibit hypoxia-inducible factors will have the double effect of blocking production of RhoA and ROCK1 and preventing metastases in women with breast cancer."
-end-
Other authors of the report include Lisha Xiang, Sun Joo Lee, Pallavi Chaturvedi, Maimon Hubbi and Denis Wirtz of the Johns Hopkins University School of Medicine.

This work was supported by grants from the National Cancer Institute (U54-CA143868), the Johns Hopkins Institute for Cell Engineering, the American Cancer Society and the Susan G. Komen Breast Cancer Foundation.

Johns Hopkins Medicine

Related Breast Cancer Articles from Brightsurf:

Oncotarget: IGF2 expression in breast cancer tumors and in breast cancer cells
The Oncotarget authors propose that methylation of DVDMR represents a novel epigenetic biomarker that determines the levels of IGF2 protein expression in breast cancer.

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.

Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.

More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.

Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.

Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.

Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.

Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.

Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.

Read More: Breast Cancer News and Breast Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.