Potential drug appears to ease effects of Prader-Willi syndrome

December 26, 2016

DURHAM, N.C. - Duke Health researchers have identified a drug-like small molecule that, in animal experiments, appears to be an effective treatment for a genetic disorder called Prader-Willi syndrome.

Prader-Willi syndrome is characterized by poor feeding, growth and weak muscles in infancy, followed by excessive eating, obesity and behavioral problems in childhood. It occurs in about one of every 15,000 births and has no cure.

If the findings by the Duke-led team bear out in human studies, the drug could become the first treatment option for Prader-Willi syndrome. The concept proven in this study could also apply immediately to other similar type of genomic imprinting disorders in which children only inherit an active copy of a gene from one parent.

"Our findings are promising and indicate that we may have a path forward for the first time to treat the severe, life-limiting features of this genetic disorder," said Yong-hui Jiang, M.D., Ph.D., associate professor in Duke's departments of Pediatrics and Neurobiology. Jiang is senior author of a study published online Dec. 26 in the journal Nature Medicine.

In most cases of Prader-Willi syndrome, the responsible gene in the region of chromosome 15 from the father is missing and the mother's copy is silent. Jiang and colleagues focused their work on finding a way to activate the silent gene from the mother's chromosome to recover the necessary gene function that would ordinarily be performed by the father's gene.

The researchers -- including Bryan Roth, M.D., Ph.D, at the University of North Carolina at Chapel Hill and co-first authors Yuna Kim, Ph.D., and Hyeong-min Lee, Ph.D. -- conducted screenings of more than 9,000 compounds. Using fluorescent marker in mouse embryonic fibroblasts, the researchers were able to see whether any of the small molecules triggered the cells to glow, which indicated they were capable of activating the maternal copy of the Prader-Willi gene.

A class of small molecule that are known as G9a inhibitors were successful, both in the mouse model of Prader-Willi syndrome and in human cells from patients with the disorder. G9a is an enzyme that is important for gene regulation.

The G9a inhibitors also appeared to have a therapeutic effect. When mice with Prader-Willi syndrome were treated with these small molecule drugs during infancy, they lived longer and had more normal growth.

"Our findings suggest that G9a inhibitors may play a role in regulating the silencing of parental chromosomes on certain genes that require an imprinting process for normal function," Jiang said. "This could provide a new insight for the molecular mechanism of genomic imprinting."
-end-
In addition to Jiang, Kim, Lee and Roth, study authors include Yan Xiong, Noah Sciaky, Samuel W. Hulbert, Xinyu Cao, Jeffrey I. Everitt and Jian Jin.

The study received support from the National Institutes of Health (HD077197, R01GM103893) and the Foundation for Prader-Willi Syndrome Research.

Duke University Medical Center

Related Chromosome Articles from Brightsurf:

The bull Y chromosome has evolved to bully its way into gametes
In a new study, published Nov. 18 in the journal Genome Research, scientists in the lab of Whitehead Institute Member David Page present the first ever full, high-resolution sequence of the Y chromosome of a Hereford bull.

Evolution of the Y chromosome in great apes deciphered
New analysis of the DNA sequence of the male-specific Y chromosomes from all living species of the great ape family helps to clarify our understanding of how this enigmatic chromosome evolved.

The male Y chromosome does more than we thought
While the Y chromosome's role was believed to be limited to the functions of the sexual organs, an University of Montreal's scientist has shown that it impacts the functions of other organs as well.

The birth of a male sex chromosome in Atlantic herring
The evolution of sex chromosomes is of crucial importance in biology as it stabilises the mechanism underlying sex determination and usually results in an equal sex ratio.

Why the 'wimpy' Y chromosome hasn't evolved out of existence
The Y chromosome has shrunken drastically over 200 million years of evolution.

Novel insight into chromosome 21 and its effect on Down syndrome
A UCL-led research team has, for the first time, identified specific regions of chromosome 21, which cause memory and decision-making problems in mice with Down syndrome, a finding that provides valuable new insight into the condition in humans.

Breakthrough in sex-chromosome regulation
Researchers at Karolinska Institutet in Sweden have uncovered a chromosome-wide mechanism that keeps the gene expression of sex chromosomes in balance in our cells.

B chromosome first -- mechanisms behind the drive of B chromosomes uncovered
B chromosomes are supernumerary chromosomes, which often are preferentially inherited and showcase an increased transmission rate.

Unveiling disease-causing genetic changes in chromosome 17
Extensive single Watson-Crick base pair mutations can occur in addition to duplication or deletion of an entire group of genes on chromosomal region 17p11.2.

What causes rats without a Y chromosome to become male?
A look at the brains of an endangered spiny rat off the coast of Japan by University of Missouri (MU) Bond Life Sciences Center scientist Cheryl Rosenfeld could illuminate the subtle genetic influences that stimulate a mammal's cells to develop as male versus female in the absence of a Y chromosome.

Read More: Chromosome News and Chromosome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.