Nav: Home

Biology's 'breadboard'

December 26, 2016

The human brain, the most complex object in the universe, has 86 billion neurons with trillions of yet-unmapped connections. Understanding how it generates behavior is a problem that has beguiled humankind for millennia, and is critical for developing effective therapies for the psychiatric disorders that incur heavy costs on individuals and on society. The roundworm C elegans, measuring a mere 1 millimeter, is a powerful model system for understanding how nervous systems produce behaviors. Unlike the human brain, it has only 302 neurons, and has completely mapped neural wiring of 6,000 connections, making it the closest thing to a computer circuit board in biology. Despite its relative simplicity, the roundworm exhibits behaviors ranging from simple reflexes to the more complex, such as searching for food when hungry, learning to avoid food that previously made it ill, and social behavior.

Understanding how this dramatically simpler nervous system works will give insights into how our vastly more complex brains function and is the subject of a paper published on December 26, 2016, in Nature Methods.

Specifically, in electrical and computer engineering, circuits are designed and studied using breadboards that allow circuit elements to be easily added, removed, and modified. Likewise, in order to understand how the neural circuits in brains generate behavior, scientists need to manipulate the activity of individual neurons, turning them on and off at will. To do this, researchers have developed robust tools (transgenic actuators), that use drugs or light to activate or silence the neurons in which they are expressed. At present, these cell-specific systems need to be custom-made for each neuron and actuator combination a researcher may be interested in.

Navin Pokala, Ph.D., assistant professor of Life Sciences at New York Institute of Technology (NYIT) College of Arts and Sciences, with researchers at Caltech, adapted the GAL4-UAS system for expressing transgenes in the nematode C elegans. This system, which uses a gene regulatory protein from yeast, greatly reduces the work required for making cell-specific perturbations. Instead of constructing new DNA and transgenic animals for each cell and actuator, new cell-actuator combinations can be generated by simply mating already-constructed animals, dramatically reducing the time and cost.

Pokala and his collaborators plan on exploring variations to the GAL4-UAS system that allow more precise control of actuator gene expression than is currently possible. The newfound ease of transgenic animal construction allows for systematic perturbation of the cells in the nervous system, allowing Pokala and colleagues to build a database linking neural perturbations to behaviors. When combined with the previously mapped circuit wiring, this database will be a valuable resource for developing and testing models of nervous system function.
-end-
The work is described in Nature Methods was funded by The Howard Hughes Medical Institute and The G. Harold and Leila Y. Mathers Charitable Foundation.

Navin Pokala can be reached at Navin.pokala@nyit.edu; (516) 686-7771. navinpokala.org

About NYIT

New York Institute of Technology (NYIT) offers 90 degree programs, including undergraduate, graduate, and professional degrees, in more than 50 fields of study, including architecture and design; arts and sciences; education; engineering and computing sciences; health professions; management; and osteopathic medicine. A non-profit independent, private institution of higher education, NYIT has 12,000 students attending campuses on Long Island and Manhattan, online, and at its global campuses.

Led by President Edward Guiliano, NYIT is guided by its mission to provide career-oriented professional education, offer access to opportunity to all qualified students, and support applications-oriented research that benefits the larger world. To date, 100,000 graduates have received degrees from NYIT. For more information, visit nyit.edu.

New York Institute of Technology

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

The Neuron: Cell and Molecular Biology
by Irwin B. Levitan (Author), Leonard K. Kaczmarek (Author)

Mirror Neurons Will Save Your Life: How To Stop Being Controlled By Other People

From Neuron to Brain (5th Ed)
by John G. Nicholls (Author), A. Robert Martin (Author), David A. Brown (Author), Mathew E. Diamond (Author), David A. Weisblat (Author), Paul A. Fuchs (Author)

The Neuron: Cell and Molecular Biology
by Irwin B. Levitan (Author), Leonard K. Kaczmarek (Author)

From Neurons to Neighborhoods : The Science of Early Childhood Development
by Committee on Integrating the Science of Early Childhood Development (Author), Youth, and Families Board on Children (Author), National Research Council (Author), Committee on Integrating the Science of Early Childhood Development (Author), Jack P. Shonkoff (Editor), Deborah A. Phillips (Editor)

Neurons in Action 2: Tutorials and Simulations using NEURON
by John W. Moore (Author), Ann E. Stuart (Author)

From Neurons to Neighborhoods: An Update: Workshop Summary (BCYF 25th Anniversary)
by National Research Council (Author), Division of Behavioral and Social Sciences and Education (Author), Institute of Medicine (Author), Youth, and Families Board on Children (Author), Steve Olson (Editor)

The Myth of Mirror Neurons: The Real Neuroscience of Communication and Cognition
by W. W. Norton & Company

Did My Neurons Make Me Do It?: Philosophical and Neurobiological Perspectives on Moral Responsibility and Free Will
by Nancey Murphy (Author), Warren S. Brown (Author)

I of the Vortex: From Neurons to Self
by Rodolfo R. Llinas (Author)

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Approaching With Kindness
We often forget to say the words "thank you." But can those two words change how you — and those around you — look at the world? This hour, TED speakers on the power of gratitude and appreciation. Guests include author AJ Jacobs, author and former baseball player Mike Robbins, Dr. Laura Trice, Professor of Management Christine Porath, and former Danish politician Özlem Cekic.
Now Playing: Science for the People

#509 Anisogamy: The Beginning of Male and Female
This week we discuss how the sperm and egg came to be, and how a difference of reproductive interest has led to sexual conflict in bed bugs. We'll be speaking with Dr. Geoff Parker, an evolutionary biologist credited with developing a theory to explain the evolution of two sexes, about anisogamy, sexual reproduction through the fusion of two different gametes: the egg and the sperm. Then we'll speak with Dr. Roberto Pereira, research scientist in urban entomology at the University of Florida, about traumatic insemination in bed bugs.