A powerful guiding principle for topological quantum synthesis

December 26, 2017

Topological materials are a new, rapidly expanding family of quantum matter, which can be classified into topological insulators (TIs), topological crystalline insulators, topological Dirac semimetals, topological Weyl semimetals, topological nodal-line semimetals, and so on. Such materials are attracting intensive attention in condensed matter physics and materials science, due to their intriguing physical properties and promising technological applications. For a given compound system, identification of its topological nature is generally complex, demanding specific determination of the appropriate topological invariant through detailed electronic structure and Berry curvature calculations. The topologically nontrivial nature is tied to the appearance of inverted bands in the electronic structure. For most topological materials, band inversions have been demonstrated to be induced by delicate synergistic effects of different physical factors, including chemical bonding, crystal field and, most notably, spin-orbit coupling (SOC). In particular, for the most widely studied topological systems of three-dimensional (3D) TIs, SOC has been identified to play the vital role in inducing band inversion. Recently, several so-called high-throughput methods were successfully developed for predicting TIs. For example, by using a certain descriptor, tens of new candidate TIs have been proposed by a research group in Duke University. Yet at the implementation level, all these approaches still have to rely on detailed band structure calculations based on first-principles.

In this cover paper, a simple and efficient criterion that allows ready screening of potential topological insulators, was proposed by the collaborative team of Prof. Huijun Liu at Wuhan University, Prof. Xingqiu Chen at the Institute of Metal Research, Chinese Academy of Sciences, and Prof. Zhenyu Zhang at the University of Science and Technology of China. The criterion is inherently tied to the band inversion induced by SOC, and is uniquely defined by a minimal number of two elemental physical properties of the constituent elements: the atomic number and Pauling electronegativity, rather than inputs from detailed computations of electronic band structures within density functional theory. The idea of the criterion is:

  1. The energy gap (Δ) at certain high-symmetry k point is largely opened by the local chemical binding of the constituent elements and crystal field splitting, while the SOC tends to pull down the conduction band minimum and push up the valence band maximum in inducing the occurrence of the band inversion with an anti-crossing shape.
  2. As an order of magnitude criterion, to induce the band inversion it would be desirable if a TI candidate material has a larger SOC strength λ and a smaller Δ. The critical or transitional case would require λ to be comparable to Δ.
  3. In principle, the SOC strength λ is proportional to the atomic number, while the band gap of a compound is closely related to the electronegativity difference between the constituent atoms. In terms of the average atomic number (Z) of the formula unit and the Pauling electronegativity difference (Δ{χ}) of the constituent elements, one can define a simple Δ ratio (Δa =0.0184Z/ Δa {χ}), and a candidate material is topologically nontrivial if Δ is larger than 1. The validity and predictive power of such criterion is demonstrated by rationalizing many known topological insulators and potential candidates in the tetradymite and half-Heusler families, and the underlying design principle is naturally also extendable to predictive discoveries of other classes of topological materials, which offers a powerful guiding principle in synthesizing topological quantum materials.
  4. -end-
    Guohua Cao, Huijun Liu, Xing-Qiu Chen, Yan Sun, Jinghua Liang, Rui Yu, Zhenyu Zhang. A simple and efficient criterion for ready screening of potential topological insulators. Science Bulletin, 2017, 62(24):1649-1653 https://doi.org/10.1016/j.scib.2017.11.016

    Science China Press

    Related Topological Insulators Articles from Brightsurf:

    Tunable THz radiation from 3D topological insulator
    Wu's research group has been investigating a three-dimensional topological insulator of bismuth telluride (Bi2Te3) as a promising basis for an effective THz system.

    Knotting semimetals in topological electrical circuits
    Scientists created exotic states of matter using electrical circuit enhanced by machine-learning algorithm

    Penn engineers create helical topological exciton-polaritons
    Researchers at the University of Pennsylvania's School of Engineering and Applied Science are the first to create an even more exotic form of the exciton-polariton, one which has a defined quantum spin that is locked to its direction of motion.

    Bridging the gap between the magnetic and electronic properties of topological insulators
    Scientists at Tokyo Institute of Technology shed light on the relationship between the magnetic properties of topological insulators and their electronic band structure.

    Topological superconducting phase protected by 1D local magnetic symmetries
    Scientists from China and USA classified 1D gapped topological superconducting quantum wires with local magnetic symmetries (LMSs), in which the time-reversal symmetry is broken but its combinations with certain crystalline symmetries, such as MxT, C2zT, C4zT, and C6zT, are preserved.

    Octupole corner state in a three-dimensional topological circuit
    Higher-order topological insulators featuring quantized bulk polarizations and zero-dimensional corner states are attracting increasing interest due to their strong mode confinement.

    Quantum simulation for 3D chiral topological phase
    Professor Liu at PKU, Professor Du and Professor Wang at USTC build up a quantum simulator using nitrogen-vacancy center to investigate a three-dimensional (3D) chiral topological insulator which was not realized in solid state system, and demonstrate a complete study of both the bulk and surface topological physics by quantum quenches.

    Photonic amorphous topological insulator
    The current understanding of topological insulators and their classical wave analogues, such as photonic topological insulators, is mainly based on topological band theory.

    Recent advances in 2D, 3D and higher-order topological photonics
    A research team from South Korea and the USA has provided a comprehensive review covering the recent progress in topological photonics, a recently emerging branch of photonics.

    Synthetic dimensions enable a new way to construct higher-order topological insulators
    Higher-order topological insulators (HOTIs) are a new phase of matter predicted in 2017, involving complicated high-dimensional structures which show signature physical effects called ''corner modes.'' Now, scientists have proposed a recipe to construct such HOTIs and observe corner modes for photons in simpler, lower-dimensional structures by harnessing an emerging concept called ''synthetic dimensions.'' This construction allows flexible tuning of the topological behavior and opens avenues for even more exotic phases of photons in very high dimensions.

    Read More: Topological Insulators News and Topological Insulators Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.