Toward designing/controlling flexibility of MOFs

December 26, 2017

Porous coordination polymers (PCPs) or metal-organic frameworks (MOFs) have been extensively studied for their diversified and designable/tailorable framework and pore structures. Compared with conventional porous materials, MOFs have much larger framework flexibility, which can give rise to not only various types of interesting structural responses and dynamic behaviors toward external stimuli, but also significantly improved performances for storage, separation, sensing and other applications. Therefore, controlling the flexibility of MOFs, or rational design and synthesis of MOFs with specified flexibility and dynamism, are of practical importance. However, framework flexibility is simultaneously controlled by many factors, and trivial difference of a structural parameter or other factor related with the sample or environment can drastically change the response. In other words, framework flexibility can be more difficult to design or control, compared with the static features such as framework and pore structures.

In a new review published in the Beijing-based journal National Science Review, scientists at the Sun Yat-Sen University in Guangzhou, China present the advances in designing/controlling the flexibility of MOFs. Co-authors Jie-Peng Zhang, Hao-Long Zhou, Dong-Dong Zhou, Pei-Qin Liao and Xiao-Ming Chen first define and distinguish the concepts of controlling the structure of flexible MOFs and controlling the flexibility of MOFs. The former refers to the change of framework structures of flexible MOFs toward external chemical (guest adsorption/desorption/exchange) and physical (temperature, light, pressure, etc.) stimuli, which is the intrinsic property of flexible MOFs and has been the topics of most researches. On the other hand, the latter uses external environment to modulate the structural response and dynamic behavior of MOFs, or designs/synthesizes new MOF materials/samples to generate specified structural response and dynamic behavior toward a given external stimulus. Based on discussions of representative examples, they systematically summarize the basic strategies for designing/controlling flexibility of MOFs, i.e., design, synthesis, and modification of the porous host, controlling the composition and size/morphology of the porous crystal sample, and controlling the external physical environment, in which the target gradually changes from designing new materials to modulating the property of existing materials.

The scientists emphasize that, "It should be pointed out that, designing, tailoring, or controlling framework flexibility is not only useful for understanding the structure-property relationship of MOFs, but also a new dimension for developing MOF materials with excellent performances for molecular recognition, high storage/delivery capacity, selective separation, abnormal/controllable thermal expansion, and so on."
-end-
This work was supported by the National Basic Research Program of China (973 Project, 2014CB845602) and the National Natural Science Foundation of China (21290173 and 21473260)

See the article:

Jie-Peng Zhang, Hao-Long Zhou, Dong-Dong Zhou, Pei-Qin Liao, and Xiao-Ming Chen
Controlling flexibility of metal-organic frameworks
Natl Sci Rev, 2017, doi: 10.1093/nsr/nwx127
https://doi.org/10.1093/nsr/nwx127

The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country's rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

Science China Press

Related Environment Articles from Brightsurf:

Detecting SARS-CoV-2 in the environment
Researchers have outlined an approach to characterize and develop an effective environmental monitoring methodology for SARS CoV-2 virus, that can be used to better understand viral persistence in built environments.

Can your diet help protect the environment?
If Americans adhere to global dietary recommendations designed to reduce the impact of food production and consumption, environmental degradation could be reduced by up to 38%, according to a new paper published in the journal Environmental Justice.

How do we disconnect from the environment during sleep and under anesthesia?
A series of new studies by researchers at Tel Aviv University's Sackler Faculty of Medicine and Sagol School of Neuroscience finds, among other important discoveries, that noradrenaline, a neurotransmitter secreted in response to stress, lies at the heart of our ability to ''shut off'' our sensory responses and sleep soundly.

Our pupil moves to the rhythm of the environment
Regular processes in the environment improve our eyesight.

New self-forming membrane to protect our environment
A new class of self-forming membrane has been developed by researchers from Newcastle University, UK.

COVID-19 and the built environment
Social distancing has Americans mostly out of the places they usually gather and in their homes as we try to reduce the spread of COVID-19.

A broad look at plant-environment interactions
Three plant science journals---the American Journal of Botany (AJB), Applications in Plant Sciences (APPS), and the International Journal of Plant Sciences (IJPS)---have joined efforts to provide a broad look at how plants interact with their environment.

New research looks at type 1 diabetes and changes in the environment
Studies have shown a rapid increase in new cases of type 1 diabetes worldwide.

Chemicals in the environment: A focus on mixtures
The real world is marked by multiple stressors, among them cocktails of chemicals.

Rubber in the environment
The tread on the tyre is worn out, new tyres are needed.

Read More: Environment News and Environment Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.