Nav: Home

Give it the plasma treatment: strong adhesion without adhesives

December 26, 2018

Osaka -Polymers containing plastics are essential in modern life. Being lightweight, strong and unreactive, a vast range of technologies depend on them. However, most polymers do not adhere naturally to other materials, so they need adhesives or corrosive chemical treatments to be attached to other materials. This is a problem in areas like food and medicine, where contamination must be avoided at all costs.

A clean way to make industrial polymers adhesive is urgently needed. Now, a team at Osaka University has achieved just that. They have developed a suite of plasma treatments to allow vulcanized rubber and the plastic PTFE (polytetrafluoroethylene) to adhere to one another, or to other materials. The method activates the polymers' surface chemistry, as described in a study in Scientific Reports.

"If you spray PTFE with a plasma of helium at 200 degrees, it can adhere to unvulcanized rubber--this is a technique we developed earlier in our lab," says study lead author Yuji Ohkubo. "But vulcanized rubber presents a greater challenge. In our latest study, we customized a new plasma treatment for vulcanized silicone rubber, making it adhere strongly to PTFE for the first time."

The silicone in question was PDMS (polydimethylsiloxane), a well-known resin. While the key breakthrough in PTFE adhesion was the heat-assisted plasma treatment, the trick with PDMS is to bombard the surface with a plasma jet, by forcing nitrogen/air plasma through a small hole. The jet breaks the silicon-carbon bonds on the surface and converts them to silanol (Si-OH).

Being more reactive than the original silicone surface, these silanol groups can bond with PTFE. Under high pressure, hydrogen bonds form between silanol and the oxygen-containing functional groups on the treated PTFE. Strong covalent bonds (C-O-Si, where C comes from PTFE and Si from silicone) further stitch the two polymers together, even with no adhesive.

Uniting the two materials allows each to enjoy the benefits of the other--the chemical resistance, dirt-repellent and slide-ability of PTFE, and the elasticity of silicone. Opaque PTFE can also be replaced by PFA (perfluoroalkoxy alkane) if transparency is needed. And that's not all--when the reverse side of the PDMS is also plasma-jetted, it can bond to copper and even glass. Like an extremely strong double-sided tape, this three-layer sandwich allows the fluoropolymers to adhere cleanly to other useful materials.

"PDMS is widely used in medicine, for example in microfluidic chips," explains co-author Katsuyoshi Endo. "There could be huge benefits in making both PTFE and PDMS more versatile for medical and food technologies through adhesive-free adhesion. Combined with the lack of any need for volatile chemicals, we hope our method will broaden the horizons for polymers in high technology."
-end-
The article, "Adhesive-free adhesion between heat-assisted plasma-treated fluoropolymers (PTFE, PFA) and plasma-jet-treated polydimethylsiloxane (PDMS) and its application," was published in Scientific Reports at DOI: https://doi.org/10.1038/s41598-018-36469-y.

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: https://resou.osaka-u.ac.jp/en/top

Osaka University

Related Plasma Articles:

Plasma-driven biocatalysis
Compared with traditional chemical methods, enzyme catalysis has numerous advantages.
How bacteria protect themselves from plasma treatment
Considering the ever-growing percentage of bacteria that are resistant to antibiotics, interest in medical use of plasma is increasing.
A breakthrough in the study of laser/plasma interactions
Researchers from Lawrence Berkeley National Laboratory and CEA Saclay have developed a particle-in-cell simulation tool that is enabling cutting-edge simulations of laser/plasma coupling mechanisms.
Researchers turn liquid metal into a plasma
For the first time, researchers at the University of Rochester's Laboratory for Laser Energetics (LLE) have found a way to turn a liquid metal into a plasma and to observe the temperature where a liquid under high-density conditions crosses over to a plasma state.
How black holes power plasma jets
Cosmic robbery powers the jets streaming from a black hole, new simulations reveal.
Give it the plasma treatment: strong adhesion without adhesives
A Japanese research team at Osaka University used plasma treatment to make fluoropolymers and silicone resin adhere without any adhesives.
Chemotherapeutic drugs and plasma proteins: Exploring new dimensions
This review provides a bird's eye view of interaction of a number of clinically important drugs currently in use that show covalent or non-covalent interaction with serum proteins.
The coming of age of plasma physics
The story of the generation of physicists involved in the development of a sustainable energy source, controlled fusion, using a method called magnetic confinement.
Intense microwave pulse ionizes its own channel through plasma
More than 30 years ago, researchers theoretically predicted the ionization-induced channeling of an intense microwave beam propagating through a neutral gas (>103 Pa) -- and now it's finally been observed experimentally.
Plasma thruster: New space debris removal technology
A Japanese and Australian research group has discovered new technology to remove space debris using a single propulsion system in a helicon plasma thruster.
More Plasma News and Plasma Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.