UC San Diego researchers identify how skin ages, loses fat and immunity

December 26, 2018

Dermal fibroblasts are specialized cells deep in the skin that generate connective tissue and help the skin recover from injury. Some fibroblasts have the ability to convert into fat cells that reside under the dermis, giving the skin a plump, youthful look and producing a peptide that plays a critical role in fighting infections.

In a study published in Immunity on December 26, University of California San Diego School of Medicine researchers and colleagues show how fibroblasts develop into fat cells and identify the pathway that causes this process to cease as people age.

"We have discovered how the skin loses the ability to form fat during aging," said Richard Gallo, MD, PhD, Distinguished Professor and chair of the Department of Dermatology at UC San Diego School of Medicine and senior author on study. "Loss of the ability of fibroblasts to convert into fat affects how the skin fights infections and will influence how the skin looks during aging."

Don't reach for the donuts. Gaining weight isn't the path to converting dermal fibroblasts into fat cells since obesity also interferes with the ability to fight infections. Instead, a protein that controls many cellular functions, called transforming growth factor beta (TGF-β), stops dermal fibroblasts from converting into fat cells and prevents the cells from producing the antimicrobial peptide cathelicidin, which helps protect against bacterial infections, reported researchers.

"Babies have a lot of this type of fat under the skin, making their skin inherently good at fighting some types of infections. Aged dermal fibroblasts lose this ability and the capacity to form fat under the skin," said Gallo. "Skin with a layer of fat under it looks more youthful. When we age, the appearance of the skin has a lot to do with the loss of fat."

In mouse models, researchers used chemical blockers to inhibit the TGF-β pathway, causing the skin to revert back to a younger function and allowing dermal fibroblasts to convert into fat cells. Turning off the pathway in mice by genetic techniques had the same result.

Understanding the biological process that leads to an age-dependent loss of these specialized fat cells could be used to help the skin fight infections like Staphylococcus aureus (S. aureus) -- a pathogenic bacteria that is the leading cause of infections of the skin and heart and a major factor in worsening diseases, like eczema. When S. aureus becomes antibiotic resistant it is known as methicillin-resistant Staphylococcus aureus or MRSA, which is a leading cause of death resulting from infection in the United States.

The long term goals and benefits of this research are to understand the infant immune system, said Gallo. The results may also help understand what goes wrong in other diseases like obesity, diabetes and autoimmune diseases.
-end-
Co-authors include: Ling-juan Zhang, UC San Diego and Xiamen University; Stella Xiang Chen, Fengwu Li, Yun Tong, Marc Liggins and Tissa Hata, all at UC San Diego; Christian F. Guerrero-Juarez and Maksim V. Plikus, both at UC Irvine; Yuqiong Liang and Ye Zheng, both at Salk Institute for Biological Studies; Xu Chen, Hao Chen and Min Li, all at Chinese Academy of Medical Science and Peking Union Medical College.

Disclosure: Richard Gallo serves on the scientific advisory board and is a consultant for Sente and MatriSys Bioscience and has equity interest. Gallo is co-founder of MatriSys Bioscience, Inc.

University of California - San Diego

Related Staphylococcus Aureus Articles from Brightsurf:

Vaccine that harnesses antifungal immunity protects mice from staph infection
Immunization of mice with a new vaccine consisting of fungal particles loaded with Staphylococcus aureus (S. aureus) proteins protects mice against S. aureus infection, according to a study published August 20 2020 in the open-access journal PLOS Pathogens by David Underhill of Cedars-Sinai Medical Center, and colleague.

New strategy emerges for vaccine against methicillin-resistant staphylococcal aureus
Experiments in mice have shown early success in vaccinating them against potentially deadly bacterial infections, such as methicillin-resistant Staphylococcal aureus, or MRSA, the strain resistant to most drug treatments.

Ways to disrupt protein synthesis in Staphylococcus aureus found
It is well known that many strains of Staphylococcus are resistant to antibiotics, and research groups around the world seek new targets in the bacteria to decrease their infectious potential.

Protective shield: How pathogens withstand acidic environments in the body
Certain bacteria, including the dangerous nosocomial pathogen MRSA, can protect themselves from acidic conditions in our body and thus ensure their survival.

One of the mechanisms of Staphylococcus antibiotic resistance deciphered
The Russian side is represented by Structural Biology Lab (Kazan Federal University) and Institute of Proteins (Russian Academy of Sciences).

Trial shows using two drugs not better than one when treating MRSA blood infections
Researchers attempting to improve the treatment for methicillin-resistant Staphylococcus aureus (MRSA) blood infections have discovered the combination of two antibiotics was no better than one, and led to more adverse effects.

Solution of the high-resolution crystal structure of stress proteins from Staphylococcus
One of the main factors favoring a microorganism's survival in extreme conditions is preserving ribosomes -- a macromolecular complex comprising RNA and proteins

A common skin bacterium put children with severe eczema at higher risk of food allergy
In a new study published today in the Journal of Allergy and Clinical Immunology, scientists from King's College London have found that young children with severe eczema infected with Staphylococcus aureus (SA) bacterium, are at a higher risk of developing a food allergy.

National handwashing campaign reduces incidence of Staphylococcus aureus infection in Australia's hospitals
Since its implementation in 2009, the National Australian Hand Hygiene Initiative (NHHI) has seen significant, sustained improvements in hand hygiene compliance among Australian healthcare workers, and reduced risks of potentially fatal healthcare-associated Staphylococcus aureus infection, according to new research being presented at this year's European Congress of Clinical Microbiology & Infectious Diseases (ECCMID) in Amsterdam.

Experimental treatment approach shows potential against Staphylococcus aureus
A new class of engineered proteins may counter infection caused by Staph aureus.

Read More: Staphylococcus Aureus News and Staphylococcus Aureus Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.