Nav: Home

For patients with kidney disease, genetic testing may soon be routine

December 26, 2018

NEW YORK, NY (December 26, 2018)--A new study has found that genes cause about 1 in 10 cases of chronic kidney disease in adults, and identifying the responsible gene has a direct impact on treatment for most of these patients.

"Our study shows that genetic testing can be used to personalize the diagnosis and management of kidney disease, and that nephrologists should consider incorporating it into the diagnostic workup for these patients," says Ali Gharavi, MD, chief of nephrology at Columbia University Vagelos College of Physicians and Surgeons, and a co-senior author of the study.

The findings were published on December 26 in the New England Journal of Medicine.

It's estimated that 1 in 10 adults in the United States have chronic kidney disease. Yet, for 15 percent of patients with chronic kidney disease, the underlying cause of kidney failure is unknown.

"There are multiple genetic causes of chronic kidney disease, and treatment can vary depending on the cause," says Gharavi. "But many of the genetic types are rare and can be difficult to detect with traditional diagnostics.

And because kidney disease is often silent in the early stages, some patients aren't diagnosed until their kidneys are close to failing, making it more difficult to find the underlying cause."

DNA sequencing has the potential to pinpoint the genetic culprits, but has not been tested in a wide range of patients with chronic kidney disease.

"Our study identifies chronic kidney disease as the most common adult disease, outside of cancer, for which genomic testing has been demonstrated as clinically essential," says David Goldstein, PhD, director of Columbia University's Institute for Genomic Medicine and a co-senior author of the study.

In this study, researchers used DNA sequencing to look for genetic kidney disorders in 3,315 individuals with various types of chronic or end-stage kidney disease. For 8.5 percent of these individuals, clinicians had not been able to identify the cause of disease.

The researchers found a genetic disorder responsible for about 9 percent of the participants' kidney problems, and DNA testing reclassified the cause of kidney disease in 1 out of 5 individuals with a genetic diagnosis. In addition, DNA testing was able to pinpoint a cause for 17 percent of participants for whom a diagnosis was not possible based on the usual clinical workup.

DNA results had a direct impact on clinical care for about 85 percent of the 168 individuals who received a genetic diagnosis and had medical records available for review. "For several patients, the information we received from DNA testing changed our clinical strategy, as each one of these genetic diagnoses comes with its own set of potential complications that must be carefully considered when selecting treatments," Gharavi says.

About half of the patients were diagnosed with a kidney disorder that also affects other organs and requires care from other specialists. A few (1.5 percent) individuals learned they had medical conditions unrelated to their kidney disease, In all of these cases, the incidental findings had an impact on kidney care. "For example, having a predisposition to cancer would modify the approach to immunosuppression for patients with a kidney transplant," adds Gharavi.

"These results suggest that genomic sequencing can optimize the development of new medicines for kidney disease through the selection of patient subgroups most likely to benefit from new therapies," says Adam Platt, PhD, Head of Global Genomics Portfolio at AstraZeneca and a co-senior author of the study.

While the current study shows the utility of DNA testing in people with kidney disease, another study led by Goldstein and Gharavi found that DNA testing in healthy individuals vastly overestimated the prevalence of kidney disease-associated genetic conditions.

"Altogether, our research suggests that DNA testing may be most useful when balanced with clinical information," says Goldstein.
-end-
About the Study

The study, "Diagnostic Utility of Exome Sequencing for Kidney Disease," was published in the New England Journal of Medicine.

Researchers at Columbia University Vagelos College of Physicians and Surgeons, Columbia's Institute of Genomic Medicine, and AstraZeneca's Center for Genomics Research collaborated in the work.

One of the cohorts in this analysis was composed of participants from AstraZeneca's AURORA clinical trial.

Additional authors: Emily Groopman (Columbia), Maddalena Marasa (Columbia), Sophie Cameron-Christie (AstraZeneca Centre for Genomics Research), Slave Petrovski (Columbia and AstraZeneca), Vimla Aggarwal (Columbia), Hila Milo-Rasouly (Columbia), Yifu Li (Columbia), Jun Y. Zhang (Columbia), Jordan Nestor (Columbia), Priya Krithivasan (Columbia), Wan Yee Lam (Columbia), Adele Mitrotti (Columbia), Stacy Piva (Columbia), Byum Hee Kil (Columbia), Debanjana Chatterjee (Columbia), Rachel Reingold (Columbia), Drew Bradbury (Columbia), Michael DiVecchia (Columbia), Holly Snyder (Columbia and University of California at San Francisco), Zueru Mu (Columbia), Karla Mehl (Columbia), Olivia Balderes (Columbia), David A. Fasel (Columbia), Chunhua Weng (Columbia), Jai Radhakrishnan (Columbia), Pietro Canetta (Columbia), Gerald Appel (Columbia), Andrew Bomback (Columbia), Wooin Ahn (Columbia), Natalie Uy (Columbia), Shumyle Alam (Columbia), David J. Cohen (Columbia), Russell Crew (Columbia), Geoffrey Dube (Columbia), Maya Rao (Columbia), Sitharthan Kamalakaran (Columbia), Brett Copeland (Columbia), Zhong Ren (Columbia), Joshua Bridgers (Columbia), Colin Malone (Columbia), Caroline Mebane (Columbia), Neha Dagaonkar (Columbia), Bengt Fellstrom (Uppsala University, Sweden), Carolina Jaefliger (AstraZeneca), Sumit Mohan (Columbia), Simone Sanna-Cherchi (Columbia), Krzysztof Kiryluk (Columbia), Jan Fleckner (AstraZeneca), and Ruth March (AstraZeneca).

The study was supported by grants from the National Institutes of Health (1F30DK116473 and 1T32DK108741-01), the American Society of Nephrology Foundation for Kidney Research, Columbia Institute for Genomic Medicine, and AstraZeneca.

David Goldstein, PhD, received consulting fees from AstraZeneca related to his role as chief advisor for the company's genomic initiative during the conduct of this study. Outside of this work, he is a founder and holds equity in Pairnomix and Praxis Therapeutics, and receives research grants from Janssen, Biogen, and UCB.

Disclosures for the other authors can be found in the paper. Columbia University Irving Medical Center provides international leadership in basic, preclinical, and clinical research; medical and health sciences education; and patient care. The medical center trains future leaders and includes the dedicated work of many physicians, scientists, public health professionals, dentists, and nurses at the Vagelos College of Physicians and Surgeons, the Mailman School of Public Health, the College of Dental Medicine, the School of Nursing, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Columbia University Irving Medical Center is home to the largest medical research enterprise in New York City and State and one of the largest faculty medical practices in the Northeast. For more information, visit cuimc.columbia.edu or columbiadoctors.org.

Columbia University Irving Medical Center

Related Kidney Disease Articles:

Predicting risk of chronic kidney disease
Data from about 5 million people (with and without diabetes) in 28 countries were used to develop equations to help identify people at increased five-year risk of chronic kidney disease, defined as reduced estimated glomerular filtration rate (eGFR).
A healthy diet may help prevent kidney disease
In an analysis of published studies, a healthy dietary pattern was associated with a 30% lower incidence of chronic kidney disease.
Is kidney failure a man's disease?
A new analysis of the ERA-EDTA Registry [1] reveals a striking gender difference in the incidence and prevalence of end-stage renal disease.
Chronic kidney disease: Everyone's concern
850 million people worldwide are affected by kidney disease. This worrying figure was published last June.
Revealed: 35 kidney genes linked to chronic kidney disease risk
An international study lead by University of Manchester scientists has discovered the identity of genes that predispose people to chronic kidney disease.
Gene editing possible for kidney disease
For the first time scientists have identified how to halt kidney disease in a life-limiting genetic condition, which may pave the way for personalised treatment in the future.
Kidney disease biomarker may also be a marker for COPD
A commonly used biomarker of kidney disease may also indicate lung problems, particularly COPD, or chronic obstructive pulmonary disease, according to new research published online in the American Thoracic Society's American Journal of Respiratory and Critical Care Medicine.
In kidney disease patients, illicit drug use linked with disease progression and death
Among individuals with chronic kidney disease, hard illicit drug use was associated with higher risks of kidney disease progression and early death.
Drinking more water does not slow decline of kidney function for kidney disease patients
A new study, published in JAMA by researchers at Lawson Health Research Institute and Western University, found that coaching patients with Chronic Kidney Disease (CKD) to drink more water does not slow down the decline of their kidney function.
Obesity surgery prevents severe chronic kidney disease and kidney failure
Patients that underwent weight-loss surgery ran a significantly lower risk of developing severe chronic kidney disease and kidney failure, when compared to conventionally treated patients, according to a study published in International Journal of Obesity.
More Kidney Disease News and Kidney Disease Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.