Paving the way for spintronic RAMs: A deeper look into a powerful spin phenomenon

December 26, 2019

Scientists at Tokyo Institute of Technology(Tokyo Tech) explore a new material combination that sets the stage for magnetic random access memories, which rely on spin--an intrinsic property of electrons-- and could outperform current storage devices. Their breakthrough published in a new study describes a novel strategy to exploit spin-related phenomena in topological materials, which could spur several advances in the field of spin electronics. Moreover, this study provides additional insight into the underlying mechanism of spin-related phenomena.

Spintronics is a modern technological field where the "spin" or the angular momentum of electrons takes a primary role in the functioning of electronic devices. In fact, collective spin arrangements are the reason for the curious properties of magnetic materials, which are popularly used in modern electronics. Researchers globally have been trying to manipulate spin-related properties in certain materials, owing to a myriad of applications in devices that work on this phenomenon, especially in non-volatile memories. These magnetic non-volatile memories, called MRAM, have the potential to outperform current semiconductor memories in terms of power consumption and speed.

A team of researchers from Tokyo Tech, led by Assoc. Prof. Pham Nam Hai, recently published a study in Journal of Applied Physics on unidirectional spin Hall magnetoresistance (USMR), a spin-related phenomenon that could be used to develop MRAM cells with an extremely simple structure. The spin Hall effect leads to the accumulation of electrons with a certain spin on the lateral sides of a material. The motivation behind this study was that the spin Hall effect, which is particularly strong in materials known as "topological insulators", can results in a giant USMR by combining a topological insulator with a ferromagnetic semiconductor.

Basically, when electrons with the same spin accumulate on the interface between the two materials, (Fig. 1) due to the spin Hall effect, the spins can be injected to the ferromagnetic layer and flip its magnetization, allowing for "memory write operations", which means the data in storage devices can be "re-written". At the same time, the resistance of the composite structure changes with the direction of the magnetization owing to the USMR effect. Because resistance can be measured using an external circuit, this allows for "memory read operations", in which data can be read using the same current path with the write operation. In existing material combination using conventional heavy metals for the spin Hall effect, however, the changes in resistance caused by the USMR effect are extremely low--well below 1%--which hinders the development of MRAMs utilizing this effect. In addition, the mechanism of the USMR effect seems to vary according to the combination of material used, and it is not clear which mechanism can be exploited for enhancing the USMR to over 1%.

To understand how material combinations can influence the USMR effect, the researchers designed a composite structure comprising a layer of gallium manganese arsenide (GaMnAs, a ferromagnetic semiconductor) and bismuth antimonide (BiSb, a topological insulator). Interestingly, with this combination, they were successful in obtaining a giant USMR ratio of 1.1%. In particular, the results showed that utilizing phenomena called "magnon scattering" and "spin-disorder scattering" in ferromagnetic semiconductors can lead to a giant USMR ratio, making it possible to use this phenomenon in real-world applications. Dr. Hai elaborates, "Our study is the first to demonstrate that it is possible to obtain an USMR ratio larger than 1%. This is several orders of magnitude higher than those using heavy metals for USMR. In addition, our results provide a new strategy to maximize the USMR ratio for practical device applications".

This study could play a key role in the development of spintronics. Conventional MRAM structure requires about 30 ultrathin layers, which is very challenging to make. By utilizing USMR for read-out operation, only two layers are needed for the memory cells. "Further material engineering may further improve the USMR ratio, which is essential for USMR-based MRAMs with an extremely simple structure and fast reading. Our demonstration of an USMR ratio over 1% is an important step toward this goal," concludes Dr. Hai.

Tokyo Institute of Technology

Related Electrons Articles from Brightsurf:

One-way street for electrons
An international team of physicists, led by researchers of the Universities of Oldenburg and Bremen, Germany, has recorded an ultrafast film of the directed energy transport between neighbouring molecules in a nanomaterial.

Mystery solved: a 'New Kind of Electrons'
Why do certain materials emit electrons with a very specific energy?

Sticky electrons: When repulsion turns into attraction
Scientists in Vienna explain what happens at a strange 'border line' in materials science: Under certain conditions, materials change from well-known behaviour to different, partly unexplained phenomena.

Self-imaging of a molecule by its own electrons
Researchers at the Max Born Institute (MBI) have shown that high-resolution movies of molecular dynamics can be recorded using electrons ejected from the molecule by an intense laser field.

Electrons in the fast lane
Microscopic structures could further improve perovskite solar cells

Laser takes pictures of electrons in crystals
Microscopes of visible light allow to see tiny objects as living cells and their interior.

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

Read More: Electrons News and Electrons Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to