Nav: Home

Development of ultrathin durable membrane for efficient oil and water separation

December 26, 2019

Researchers led by Professor MATSUYAMA Hideto and Professor YOSHIOKA Tomohisa at Kobe University's Research Center for Membrane and Film Technology have succeeded in developing an ultrathin membrane with a fouling-resistant silica surface treatment for high performance separation of oil from water.

Furthermore, this membrane was shown to be versatile; it was able to separate water from a wide variety of different oily substances.

These results were published online in the Journal of Materials Chemistry A on October 3 2019.

Introduction

The development of technology to separate oil from water is crucial for dealing with oil spills and water pollution generated by various industries. By 2025, it is predicted that two thirds of the world's population won't have sufficient access to clean water. Therefore the development of technologies to filter oily emulsions and thus increase the amount of available clean water is gaining increasing attention.

Compared with traditional purification methods including centrifugation and chemical coagulation, membrane separation has been proposed as a low cost, energy efficient alternative. Although this technology has been greatly developed, most membranes suffer from fouling issues whereby droplets of oil get irreversibly absorbed onto the surface. This leads to membrane pore blocking, subsequently reducing its lifespan and efficiency.

One method of mitigating the fouling issues is to add surface treatments to the membrane. However, many experiments with this method have encountered problems such as changes in the original surface structure and the deterioration of the treated surface layer by strong acid, alkaline and salt solutions. These issues limit the practical applications of such membranes in the harsh conditions during wastewater treatment.

Research Methodology

In this study, researchers succeeded in developing a membrane consisting of a porous polyketone (PK) support with a 10 nano-meter thick silica layer applied on the top surface (Figure 1). This silica layer was formed onto the PK fibrils using electrostatic attraction- the negatively charged silica was attracted to the positively charged PK.

The PK membrane has a high water permeance due to its large pores and high porosity. The silicification process- the addition of silica on the PK fibrils- provides a strong oil-repellant coating to protect the surface modified membrane from fouling issues.

Another advantage of this membrane is that it requires no large pressure application to achieve high water penetration. The membrane exhibited water permeation by gravity- even when a water level as low as 10cm (with a pressure of approx. 0.01atm) was utilized. In addition, the developed membrane was able to reject 99.9% of oil droplets- including those with a size of 10 nanometers. By using this membrane with an area of 1m2, 6000 liters of wastewater can be treated in one hour under an applied pressure of 1atm. It was also shown to be effective at separating water from various different oily emulsions (Figure 2).

As mentioned, the silification provided a strong oil repellant coating. Through the experiments carried out on the membrane to test its durability against fouling, it was discovered that oil did not become adsorbed onto the surface and that the oil droplets could be easily cleaned off (Figure 3). This membrane showed great tolerance against a variety of acidic, alkaline, solvent and salt solutions.

Conclusion

The ultrathin membrane developed by this research group has demonstrated efficient separation of water from oily emulsions, in addition to anti-fouling resistance. Technology to separate emulsions is indispensable in the fight against water pollution and clean water shortages. It is hoped that this development could be utilized in the treatment of industry waste water.
-end-
Glossary

Emulsion: when one liquid contains a dispersion of one or more other liquids.

Kobe University

Related Technology Articles:

April's SLAS Technology is now available
April's Edition of SLAS Technology Features Cover Article, 'CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence'.
Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.
Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.
Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.
The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).
AI technology could help protect water supplies
Progress on new artificial intelligence (AI) technology could make monitoring at water treatment plants cheaper and easier and help safeguard public health.
Transformative technology
UC Davis neuroscientists have developed fluorescence sensors that are opening a new era for the optical recording of dopamine activity in the living brain.
Do the elderly want technology to help them take their medication?
Over 65s say they would find technology to help them take their medications helpful, but need the technology to be familiar, accessible and easy to use, according to research by Queen Mary University of London and University of Cambridge.
Technology detecting RNase activity
A KAIST research team of Professor Hyun Gyu Park at Department of Chemical and Biomolecular Engineering developed a new technology to detect the activity of RNase H, a RNA degrading enzyme.
Taking technology to the next level
Physicists from the ARC Centre of Excellence for Ultrahigh bandwidth Devices for Optical Systems (CUDOS) developed a new hybrid integrated platform, promising to be a more advanced alternative to conventional integrated circuits.
More Technology News and Technology Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.