FEFU scientists participate in development of ceramic materials that are IR-transparent

December 26, 2019

Scientists from Far Eastern Federal University (FEFU) teamed up with colleagues from Institute of Chemistry (FEB RAS), Institute for Single Crystals (Ukraine), and Shanghai Institute of Ceramics (Chinese Academy of Sciences) to develop Y2O3?MgO nanocomposite ceramics with uniform distribution of two phases, microhardness over 11 GPa, and average grain size of 250 nm. It capable of transmitting over 70% of IR-range with wavelength up to 6,000 nm. A related article was published in Ceramics International.

Due to the submicron size of the grains and their even distribution in the whole volume of the material, the yttrium oxide and magnesium oxide (Y2O3?MgO) ceramics possesses advanced optical, thermophysical, and mechanical properties (thermal stability, thermal conductivity, hardness, etc.) and surpasses its single-phase commercial analogs Y2O3 and MgO by these parameters. The team managed to achieve such advanced characteristics thanks to an innovative method - spark plasma sintering of yttrium and magnesium oxide nanopowders. This method is being actively developed at FEFU and the Institute of Chemistry (FEB RAS).

The new material can be used in modern high tech production processes, for example, to manufacture shielding windows for IR systems in aerospace engineering.

"To develop the Y2O3?MgO nanoceramics with uniform distribution of two phases, our colleagues had to solve a complex problem of even distribution of particle contact points in Y2O3 and MgO nanopowders. To do so, they used the method of self-propagating glycine-nitrate synthesis with the excess of glycine and nitric acid. Due to the use of reaction systems with the excess of glycine, a large quantity of nucleation centers was generated within a short time in the course of composite nanopowders synthesis, and the uniformity of Y2O3 and MgO nanoparticle sizes was reached. Large volumes of gases emitted in the course of the reaction secured the isolation of the particles and prevented aggregation. Under these conditions the consolidation of the powders took place mainly because of plastic deformation without grain boundary sliding, turning, and further coalescence of the grains. Temperature differences in the whole volume of the compact were reduced to the minimum in the course of sintering," said Denis Kosyanov, the head of the research team at FEFU, and a senior researcher at the Center for the National Technological Initiative, FEFU.

According to the scientist, Y2O3?MgO ceramic nanocomposites have been actively studied all over the world for only a couple of years. They are considered promising materials for operations in the IR range and are known for increased mechanical and thermal stability.

The new material has staggered structure with 1:1 phase volume ratio. Its average grain size is 250 nm, and microhardness is over 11 GPa. The ceramics transmits over 70% of light in the IR range with wavelength up to 6,000 nm.

The material was manufactured from Y2O3 and MgO nanopowders with controlled particle sizes. The powders were compacted using a fast consolidation method called spark plasma sintering. The procedure took 8 minutes and was carried out at the temperature of 1,300°? and under the pressure of 60 MPa. This method helped the scientists suppress diffusion mass transfer and prevent the growth of the grains beyond the critical size (~400 nm).

"The IR transparency of Y2O3-MgO nanocomposites increases with the increasing of sintering temperatures, and top values are reached at 1,300-1,350°?. This is due to the increase of sample density, grain growth, and the reduction of grain boundary length. At higher sintering temperatures the balance of the system shifts, the staggered structure of the Y2O3 and MgO grains is broken, and the so-called abnormal grain growth takes place," concluded Denis Kosyanov.

FEFU runs a Materials priority project and a Center for National Technological Initiatives in Neurotechnologies, VR, and AR Technologies (grant No. 1/1251/2018 dated October 16, 2018). The researchers working in these areas develop scientific and technical bases for multifunctional ceramic materials to be used in microelectronics, lighting technologies, and radiochemistry.
-end-
D.Yu. Kosyanov is gratefully acknowledging the Ministry of Science and Higher Education of the Russian Federation (Grant No. 3.2168.2017/4.6).

Far Eastern Federal University

Related Ceramics Articles from Brightsurf:

FEFU scientists helped design a new type of ceramics for laser applications
Material scientists from Far Eastern Federal University (FEFU) joined an international team of researchers to develop new nanocomposite ceramics (Ho3+:Y2O3-MgO) that can be employed in high-capacity laser systems operating in the medium infrared range (IR) of 2-6 micrometers.

New light for plants
Scientists from ITMO in collaboration with their colleagues from Tomsk Polytechnic University came up with an idea to create light sources from ceramics with the addition of chrome: the light from such lamps offers not just red but also infrared (IR) light, which is expected to have a positive effect on plants' growth.

Scientists develop sorbent for purifying water from radioactive elements
Scientists from Far Eastern Federal University (FEFU) in collaboration with colleagues from the Institute of Chemistry FEB RAS come up with a smart technology for the synthesis of sorbent based on a ''tungsten bronze'' compound powder (Na2WO4) aimed to purify industrial and drinking water from hazardous radionuclides cesium (137Cs), and strontium (90Sr), as well as for effective processing of liquid radioactive waste.

Understanding ceramic materials' 'mortar' may reveal ways to improve them
New research shows that in the important ceramic material silicon carbide, carbon atoms collect at those grain boundaries when the material is exposed to radiation.

Current model for storing nuclear waste is incomplete
The materials the United States and other countries plan to use to store high level nuclear waste will likely degrade faster than anyone previously knew, because of the way those materials interact, new research shows.

FEFU scientists participate in development of ceramic materials that are IR-transparent
Scientists from Far Eastern Federal University (FEFU) teamed up with colleagues from Institute of Chemistry (FEB RAS), Institute for Single Crystals (Ukraine), and Shanghai Institute of Ceramics (Chinese Academy of Sciences) to develop Y2O3?MgO nanocomposite ceramics with uniform distribution of two phases, microhardness over 11 GPa, and average grain size of 250 nm.

Ceramic industry should use carbon reducing cold sintering process says new research
A new techno-economic analysis, by a team led by a researcher from WMG at the University of Warwick, shows that the energy intensive ceramic industry would gain both financial and environmental benefits if it moved to free the cold sintering process from languishing in labs to actual use in manufacturing everything from high tech to domestic ceramics.

New technique to improve ductility of ceramic materials for missiles, engines
Purdue University researchers have developed a new process to help overcome the brittle nature of ceramics and make it more ductile and durable.

Lasers enable engineers to weld ceramics, no furnace required
Smartphones that don't scratch or shatter. Metal-free pacemakers. Electronics for space and other harsh environments.

FEFU scientists to broaden ideas about reactive sintering of transparent ceramics
Green bodies' porous structure, i.e. mesostructure, affects dramatically the functional parameters of the optical ceramics obtained by reactive sintering.

Read More: Ceramics News and Ceramics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.