Natural compound from 'pond scum' shows potential activity against Alzheimer's

December 27, 2005

A compound isolated from a cyanobacterium, a type of blue-green algae known as Nostoc, shows promise of becoming a natural drug candidate for fighting Alzheimer's and other neurodegenerative diseases, according to an in vitro study by researchers in Switzerland. It is believed to be the first time that a potent agent against Alzheimer's has been isolated from cyanobacteria, commonly known as 'pond scum.' The study was published in the Dec. 26 issue of the Journal of Natural Products, a monthly peer-reviewed joint publication of the American Chemical Society and the American Society of Pharmacognosy.

Cyanobacteria and other marine natural products have been increasingly found to be a promising source of drug candidates for fighting a variety of human diseases, including cancer and bacterial infections, but their chemistry has been largely unexplored, experts say. Now, a common marine organism could lead to yet another potential health benefit, says study leader Karl Gademann, Ph.D., an organic chemist at the Swiss Federal Institute of Technology (ETH) in Zürich. Gademann's lab specializes in identifying, synthesizing and studying new bioactive compounds from natural sources.

There is no cure for Alzheimer's at present, although cholinesterase inhibitors have shown promise for delaying or preventing the symptoms of mild to moderate forms of the disease, experts say. The newly isolated compound, nostocarboline, was shown to be a potent inhibitor of cholinesterase -- a brain chemical thought to be important for memory and thinking -- whose breakdown has been associated with the disease's progression. The natural compound's potency is comparable to galanthamine, a cholinesterase inhibitor already approved for the treatment of Alzheimer's, the researchers say.

As with any promising structure, it could be many years before the new compound is tested as a drug candidate in humans, the scientists caution. In addition to Gademann, others involved in this study include Friedrich Jüttner and Paul Becher of the University of Zürich and Julien Beuchat, currently with the Université de Lausanne in Switzerland.
-end-
The American Chemical Society -- the world's largest scientific society -- is a nonprofit organization chartered by the U.S. Congress and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

The online version of the research paper cited above was initially published Dec. 2 on the journal's Web site. Journalists can arrange access to this site by sending an e-mail to newsroom@acs.org or calling the contact person for this release.

American Chemical Society

Related Neurodegenerative Diseases Articles from Brightsurf:

Bringing drugs to the brain with nanoparticles to treat neurodegenerative diseases
Researchers from the Institut national de la recherche scientifique (INRS) have shown that nanoparticles could be used to deliver drugs to the brain to treat neurodegenerative diseases.

First 'pathoconnectome' could point toward new treatments for neurodegenerative diseases
Scientists from the John A. Moran Eye Center at the University of Utah have achieved another first in the field of connectomics, which studies the synaptic connections between neurons.

Unlocking the mystery of tau for treatment of neurodegenerative diseases
A team of researchers from various collaborating universities and hospitals in Japan has uncovered crucial molecular details regarding the activity of the ''tau'' protein, promising to revolutionize the therapy of tau-induced neurodegenerative diseases.

Investigational drug stops toxic proteins tied to neurodegenerative diseases
An investigational drug that targets an instigator of the TDP-43 protein, a well-known hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), may reduce the protein's buildup and neurological decline associated with these disorders, suggests a pre-clinical study from researchers at Penn Medicine and Mayo Clinic.

Inhibition of sphingolipid metabolism and neurodegenerative diseases
Disrupting the production of a class of lipids known as sphingolipids in neurons improved symptoms of neurodegeneration and increased survival in a mouse model.

How understanding the dynamics of yeast prions can shed light on neurodegenerative diseases
How understanding the dynamics of yeast prions can shed light on neurodegenerative diseases

New family of molecules to join altered receptors in neurodegenerative diseases
An article published in the Journal of Medicinal Chemistry shows a new family of molecules with high affinity to join imidazoline receptors, which are altered in the brain of those patients with neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's.

Examining diagnoses of stress-related disorders, risk of neurodegenerative diseases
Researchers investigated how stress-related disorders (such as posttraumatic stress disorder, adjustment disorder and stress reactions) were associated with risk for neurodegenerative diseases, including Alzheimer and Parkinson disease and amyotrophic lateral sclerosis (ALS), using data from national health registers in Sweden.

Toxic protein, linked to Alzheimer's and neurodegenerative diseases, exposed in new detail
The protein tau has long been implicated in Alzheimer's and a host of other debilitating brain diseases.

Study uncovers unexpected connection between gliomas, neurodegenerative diseases
New basic science and clinical research identifies TAU, the same protein studied in the development of Alzheimer's, as a biomarker for glioma development.

Read More: Neurodegenerative Diseases News and Neurodegenerative Diseases Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.