Study maps life in extreme environments

December 27, 2007

A team of biologists have developed a model mapping the control circuit governing a whole free living organism. This is an important milestone for the new field of systems biology and will allow the researchers to model how the organism adapts over time in response to its environment. This study marks the first time researchers have accurately predicted a cell's dynamics at the genome scale (for most of the thousands of components in the cell). The findings, which are based on a study of Halobacterium salinarum, a free-living microbe that lives in hyper-extreme environments, appear in the latest issue of the journal Cell.

The study's lead authors are New York University Assistant Biology Professor Richard Bonneau, who holds appointments at NYU's Center for Genomics & Systems Biology and the university's Courant Institute for Mathematical Sciences, and Nitin Baliga of the Institute for Systems Biology in Seattle, WA. The study also included researchers at the University of Maryland, Vanderbilt University, and the University of Washington.

The researchers focused on a little studied organism that can survive high salt, radiation, and other stresses that would be deadly to most other organisms. By focusing on such an organism the researchers were able to show definitively that they could understand and model the circuit controlling the cell directly from experiments designed to measure all genes in the genome simultaneously. These are called systems-biology experiments. This scholarship is part of a new scientific field, systems biology, which examines how genes influence each other via extremely large networks of interaction and how these networks respond to stimuli, adapting over time to new environments and cell states. The field has blossomed over the past 10 years, spurred by successful mapping of genomic systems.

By a combination of experimental and algorithmic advances studies in this area have shown that scientific knowledge can go from genome to a functional and dynamical draft-model of the whole organism in a relatively short time. Important previous studies in this area identified cell components (genome sequencing) and how cell components are connected. But the study in Cell went beyond previous scholarship and accurately modeled how Halobacterium, an important organism in high-salt environments such as the Dead Sea or Utah's Great Salt Lake, functioned over time and responded to changing environmental conditions. The researchers were, for the first time, able to predict how over 80 percent of the total genome (several thousand genes) responded to stimuli over time, dynamically rearranging the cell's makeup to meet environmental stresses.

"This organism is amazingly versatile and tolerates lots of different extreme environmental stresses," said Bonneau. "It does this by making decisions and dynamically changing the levels of genes and proteins; if it makes incorrect decisions it dies. Our model shows how these decisions get made, how the bug responds."

"This is also a good model to explain how, in general, cells make stable decisions as they move through time scales," added Bonneau, who is part of an NYU research group that handled the analysis of this genome. "If you want to understand how cells respond to their environments, the model offers a clearer window than previously existed for this domain of life."

The collaboration between Baliga's and Bonneau's research groups represents a type of partnership becoming more essential to biological and biomedical research: biologists and computer scientists teaming up to design experiments and analysis that synergize to decipher living systems, resulting in ever more complex and accurate models of the cell. The result is more comprehensive, reaching genome-scale levels, more accurate, and more relevant to biologists and biomedical researchers hoping to understand the whole system.

Bonneau added that by understanding how biological systems function, researchers can then turn their attention to engineering the biosynthesis of biofuels and pharmaceuticals.

"We are now gearing up to try this sort of analysis on several other organisms," he noted. "In addition, because this study examined the dynamics of a key environmental microbe it offers a window into understanding life in extreme environments, in some cases created by human activities, such as the concentration of pollution by evaporation or high salt marine environments."
-end-
The study was sponsored by the National Science Foundation and the U.S. Department of Energy.

New York University

Related Genome Articles from Brightsurf:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.

Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.

A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.

Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.

A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.

How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.

Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.

Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.

Read More: Genome News and Genome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.