Comprehensive report on sudden oak death

December 27, 2010

ALBANY, Calif.--Synthesizing more than 10 years of cooperative research on the exotic invasive, quarantine sudden oak death pathogen, the USDA Forest Service's Pacific Southwest Research Station (PSW) recently published "Sudden Oak Death and Phytophthora ramorum: A Summary of the Literature." This 181-page comprehensive report covers a wide range of topics, including a history of sudden oak death, identification and distribution of the disease, epidemiology and modeling, management and control, and economic and environmental impacts.

Compiled by retired U.S. Forest Service Pacific Southwest regional forest pathologist John T. Kliejunas, the report summarizes research findings published by hundreds of scientists from U.S. and international government agencies and universities, many supported by PSW's extramural Sudden Oak Death research program.

"The sudden oak death pathogen is a concern to society since it damages cherished and economically valuable trees, forest ecosystems, ornamental nursery plants and is an emerging, exotic microbe," said Susan Frankel, PSW's sudden oak death research manager. "This book distills a decade of discovery, exploration and struggle to contain and understand the pathogen's behavior and impact in wildlands, gardens, and nurseries worldwide. Regulators, forest pathologists, and the nursery industry are utilizing this information to work together to prevent both pathogen spread and future exotic pest introductions."

The pathogen was new to science when identified in 2000. Information about the disease is scattered in scientific journals, government reports and newspaper articles, so this volume provides a cohesive narrative of what is known about the sudden oak death pathogen for a professional audience, college students and others interested in the biology and management of this pathogen.

Key results include: advances in genetics and diagnostics that show the pathogen has inadvertently been shipped long distances on nursery stock and can escape infested nurseries and infect adjacent forest vegetation; pesticide and other treatments for high-value trees and nursery stock; waterway early-detection monitoring techniques; and the discovery of several new related Phytophthora species.

Sudden oak death first appeared in the mid-1990s when an unusual die-off of coast live oaks and tanoaks was observed in Marin County, Calif. In coastal California, the pathogen has killed over a million trees, many in densely populated neighborhoods. The pathogen threatens the health of U.S. oak forests in the Midwest and East. Quarantined in the U.S., European Union, Canada and more than 60 other countries, it has been detected on rhododendron, camellia and other ornamental nursery plants in North America and Europe; nursery detections trigger mandatory eradication. Recent outbreaks in the United Kingdom on Japanese larch are requiring the clear-cutting of thousands of trees. The risk to U.S. larch and other conifer species is not yet known. Additionally, recent detections in rivers in the Pacific Northwest and Southern U.S. are a threat that could lead to pathogen establishment in new areas.
-end-
Information on how to download or order a free copy of the report, "Sudden Oak Death and Phytophthora ramorum: A Summary of the Literature" can be found at: http://www.fs.fed.us/psw/publications/documents/psw_gtr234/.

The Pacific Southwest Research is headquartered in Albany, Calif. The station develops and communicates science needed to sustain forest ecosystems and other benefits to society. It has laboratories and research centers in California, Hawaii and the United States-affiliated Pacific Islands. For more information, visit http://www.fs.fed.us/psw/.

USDA Forest Service - Pacific Southwest Research Station

Related Pathogen Articles from Brightsurf:

Cell-autonomous immunity and the pathogen-mediated evolution of humans
Although immune responses are generated by a complex, hierarchical arrangement of immune system organs, tissues, and components, the unit of the cell has a particularly large effect on disease progression and host survival.

Microbial genetics: A protean pathogen
The bacterium Helicobacter pylori is linked to increased risk of stomach cancer, and is genetically highly variable.

"Winter is coming": The influence of seasonality on pathogen emergence
Seasonal fluctuations drive the dynamics of many infectious diseases. For instance, the flu spreads more readily in winter.

Fungal pathogen disables plant defense mechanism
Cabbage plants defend themselves against herbivores and pathogens by deploying a defensive mechanism called the mustard oil bomb.

The disease pyramid: Environment, pathogen, individual and microbiome
Researchers from the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), the Université de Toulouse and the Helmholtz Centre for Environmental Research (UFZ) show how the microbial colonisation of the organism influences the interactions between living organisms, the environment and pathogens, using amphibians like frogs as examples.

Global spread of the multi-resistant pathogen Stenotrophomonas maltophilia
An international consortium found a remarkable global spread of strains of a multi-resistant bacterium that can cause severe infections - Stenotrophomonas maltophilia.

New information about the transmission of the amphibian pathogen, Bsal
Using existing data from controlled experiments and computer simulations, researchers with the University of Tennessee Institute of Agriculture have found that host contact rates and habitat structure affect transmission rates of Bsal among eastern newts, a common salamander species found throughout eastern North America.

New pathogen threatens fennel yield in Italy
A new fungal genus and species Ochraceocephala foeniculi causes fennel yield losses of about 20-30% for three different cultivars.

Study shows CRISPR effectiveness against colitis pathogen
Research at North Carolina State University shows that the CRISPR-Cas system can be used to effectively target and eliminate specific gut bacteria, in this case Clostridioides difficile, the pathogen that causes colitis -- a chronic, degenerative disease of the colon.

X-ray eyes peer deeper into deadly pathogen
In a new study, researchers at the Biodesign Center for Applied Structural Discovery and their international colleagues examine a key membrane protein responsible for the tularemia bacterium's prodigious ability to infect the body and cause illness.

Read More: Pathogen News and Pathogen Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.