WHOI research projects awarded $5.2 million to support marine microbial research
December 27, 2012There are more microbes in a bucket of seawater than there are people on Earth. Despite their abundance, humans are only just beginning to fathom the complex role marine microbes play in the ocean ecosystem.
These tiny creatures are responsible for the chemical reactions that drive Earth's marine biogeochemical cycles, yet, in terms of how and why groups of microbes interact and what the functional consequences are of those interactions, they are still considered "black boxes." An understanding of them is critical for assessing the ocean's health and productivity.
Three projects at the Woods Hole Oceanographic Institution, which received a total of $5.2 million in 2012 from the Gordon and Betty Moore Foundation's Marine Microbiology Initiative, will employ scientific inquiry and the latest technology and laboratory techniques to shed light on microbes. Their work will look for answers to questions regarding the flow of nutrients through microbial food webs--who eats and secretes what, where, and when--and the resulting biogeochemical transformations.
"The support of the Gordon and Betty Moore Foundation is critical to enabling a fundamental understanding of microbes' contribution to ocean health and productivity," says WHOI President and Director Susan Avery. "There is so much more to know about marine microbes' genetic diversity, how they secure nutrients, what other organisms they interact with, and the biogeochemical changes they bring about in the ocean. These new projects will contribute toward the ultimate goal of a comprehensive understanding of marine microbial communities."
For the last few decades, oceanographers have been thinking about microbes simply as components of the marine food web: they take up nutrients and are prey for larger organisms, and their abundance and diversity in the ocean depends only on the amounts and types of nutrients and predators in their environment. This view is overly simplistic, and these grants will allow WHOI investigators to look at the molecular basis for the much more complex processes that they have hypothesized are at play in the sea.
These awards target advancing understanding at inter-disciplinary interfaces in microbial oceanography by supporting the development of sophisticated technologies and methods and by testing the newly developed approaches in the field. The funded projects at WHOI include:
- Investigating Dissolved Organic Matter in the Microbial Loop - WHOI chemist Dan Repeta with Ed DeLong at MIT.
To develop laboratory and field-based experimental systems for characterizing the roles of microbial physiology, ecology and biogeochemistry in the cycling of dissolved organic matter in the nutrient-poor ocean. - Identification and Quantification of New Biomarkers for Key Microbial Species - WHOI chemist Elizabeth Kujawinski.
To develop new protocols to detect the products of microbial metabolism in seawater to understand the influence of marine microbial communities and their activities on the chemical composition of their surroundings. The new procedures will enable researchers to quantify the abundance of these molecules that serve as the currency of nutrient flow among the studied microbes. - Infochemical Control of Microbial Carbon and Nutrient Cycling in the North Atlantic - WHOI chemists Ben Van Mooy and Tracy Mincer, and WHOI biologist Matt Johnson, with Kay Bidle at Rutgers and Assaf Vardi at the Weizmann Institute of Science in Israel.
To investigate how certain molecules - or "infochemicals" - that microbes use to communicate with one another influence microbial interactions and nutrient cycling in the North Atlantic Ocean. The project has the potential to create a new view of the sea where infochemical signaling governs the inter- and intra-domain microbial interactions that influence the biogeochemical fluxes of carbon and nutrients.
-end-
About the Woods Hole Oceanographic Institution:The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean's role in the changing global environment.
About the Gordon and Betty Moore Foundation:
The Gordon and Betty Moore Foundation, established in 2000, seeks to advance scientific research, environmental conservation and patient care. The Science Program's Marine Microbiology Initiative strives to deepen our understanding of marine microbial communities. As the smallest and most abundant organisms in the Earth's oceans, marine microorganisms play a critical role in maintaining ocean health and productivity. For more information, please visit www.moore.org.
Woods Hole Oceanographic Institution
Related Microbes Articles from Brightsurf:
A new look at deep-sea microbes
Microbes found deeper in the ocean are believed to have slow population turnover rates and low amounts of available energy.
Microbes might manage your cholesterol
Researchers discover a link between human blood cholesterol levels and a gene in the microbiome that could one day help people manage their cholesterol through diet, probiotics, or entirely new types of treatment.
Can your gut microbes tell you how old you really are?
Harvard longevity researchers in collaboration with Insilico Medicine develop the first AI-powered microbiomic aging clock
What can be learned from the microbes on a turtle's shell?
Research published in the journal Microbiology has found that a unique type of algae, usually only seen on the shells of turtles, affects the surrounding microbial communities.
Life, liberty -- and access to microbes?
Poverty increases the risk for numerous diseases by limiting people's access to healthy food, environments and stress-free conditions.
Rye is healthy, thanks to an interplay of microbes
Eating rye comes with a variety of health benefits. A new study from the University of Eastern Finland now shows that both lactic acid bacteria and gut bacteria contribute to the health benefits of rye.
Gut microbes may affect the course of ALS
Researchers isolated a molecule that may be under-produced in the guts of patients.
Gut microbes associated with temperament traits in children
Scientists in the FinnBrain research project of the University of Turku discovered that the gut microbes of a 2.5-month-old infant are associated with the temperament traits manifested at six months of age.
Gut microbes eat our medication
Researchers have discovered one of the first concrete examples of how the microbiome can interfere with a drug's intended path through the body.
Microbes can grow on nitric oxide
Nitric oxide (NO) is a central molecule of the global nitrogen cycle.
Read More: Microbes News and Microbes Current Events
Microbes found deeper in the ocean are believed to have slow population turnover rates and low amounts of available energy.
Microbes might manage your cholesterol
Researchers discover a link between human blood cholesterol levels and a gene in the microbiome that could one day help people manage their cholesterol through diet, probiotics, or entirely new types of treatment.
Can your gut microbes tell you how old you really are?
Harvard longevity researchers in collaboration with Insilico Medicine develop the first AI-powered microbiomic aging clock
What can be learned from the microbes on a turtle's shell?
Research published in the journal Microbiology has found that a unique type of algae, usually only seen on the shells of turtles, affects the surrounding microbial communities.
Life, liberty -- and access to microbes?
Poverty increases the risk for numerous diseases by limiting people's access to healthy food, environments and stress-free conditions.
Rye is healthy, thanks to an interplay of microbes
Eating rye comes with a variety of health benefits. A new study from the University of Eastern Finland now shows that both lactic acid bacteria and gut bacteria contribute to the health benefits of rye.
Gut microbes may affect the course of ALS
Researchers isolated a molecule that may be under-produced in the guts of patients.
Gut microbes associated with temperament traits in children
Scientists in the FinnBrain research project of the University of Turku discovered that the gut microbes of a 2.5-month-old infant are associated with the temperament traits manifested at six months of age.
Gut microbes eat our medication
Researchers have discovered one of the first concrete examples of how the microbiome can interfere with a drug's intended path through the body.
Microbes can grow on nitric oxide
Nitric oxide (NO) is a central molecule of the global nitrogen cycle.
Read More: Microbes News and Microbes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.