Rice scientists divide and conquer

December 28, 2009

Half a protein is better than none, and in this case, it's way better than a whole one. A Rice University lab has discovered that dividing a particular fluorescent protein and using it as a tag is handy for analyzing the workings of live cells, particularly in the way they employ iron-sulfur clusters.

Iron and sulfur in just the right amounts are critical to good health. They're in the food people eat and vitamins they take every day, but having too much or too little in the cells can cause serious problems.

Iron-sulfur clusters are molecules with as few as four atoms. They are manufactured and regulated by proteins in living cells, and their role is a fairly recent field of study for researchers interested in Friedreich's ataxia, sideroblastic anemia and myopathy, diseases caused by defects in proteins. But until now, there's been no way to look at such "metalloclusters" in living cells.

Jonathan Silberg, an assistant professor of biochemistry and cell biology at Rice, has been studying the mysteries of these molecules for years. He has come up with a way to see what they're doing in living cells. Silberg and his team published a paper in the December edition of Chemistry & Biology that details a new technique for imaging clusters that involves attaching them, through an intermediary, to fluorescent fragments of protein.

That intermediary is a human protein called GRX2, a glutaredoxin that helps cells deal with oxidative damage on other proteins. Its activity can be switched off in test tubes by association with an iron-sulfur cluster. The team had already proved that GRX2 would still bond with iron-sulfur clusters even when tagged with a green fluorescent protein; this makes it useful for in vitro studies, but the fluorescence wasn't strong enough to be seen in living cells.

However, attaching fragments of a yellow fluorescent protein called Venus to monomers (single molecules) of GRX2 worked quite well. When injected into living cells, the tagged monomers find and use iron-sulfur clusters as a kind of bridge and bond with each other. That brings the Venus fragments close enough to each other to light up sufficiently to be seen through a microscope.

"If we need an iron-sulfur cluster to get fluorescence, then we have a reporter for those clusters in living cells," Silberg said. The custom proteins can be used to analyze cells for signs of diseases involving iron-sulfur irregularities.

"That's why I'm really excited about this. This is a screen that will allow fundamental biology that nobody can do right now," he said. "And it has high potential for helping us find real treatments for disease."

Silberg said iron and sulfur were present in Earth's primordial stew even before there was oxygen. "The atmosphere was anaerobic when life evolved, and iron and sulfur were plentiful. These metalloclusters are easy to build, so you can imagine that if the chemistry's simple and the molecules are around, proteins will evolve to do a lot of chemistry using iron-sulfur clusters.

"Then photosynthetic organisms evolved and started to produce oxygen. Iron is very easily oxidized, so aerobic organisms evolved all this machinery to protect it, to repair it. That's the machinery we're studying."

Measuring clusters in live cells is a breakthrough of great interest to the American Heart Association, which partly funded the study. "They gave us money to build more tools," Silberg said. "They're interested in Friedreich's ataxia (which can lead to heart disease), but they also want to know if we can develop ways to image other proteins with metalloclusters."

In this study, he said, "We actually answered a fundamental biological question -- that glutaredoxins associate using metalloclusters in vivo. No one's ever showed that in living human cells."

Refining the tools has high priority in Silberg's lab now, but in the long term, he sees potential for the technology to study the roots of aging itself. Iron is toxic to the body if not managed properly, he said, and since oxidation appears to be central to aging, studies of the process tend to draw a lot of interest.

"Will people age faster because their iron-sulfur cluster assembly is different? To me, the answer is decades out, but it's a very interesting question. How will subtle differences in oxidative stress affect aging?

"It's getting more tantalizing now that there are direct links between defects in iron-sulfur cluster assembly and nuclear genome stability," he said. "It's no longer, 'Oh, mitochondrial oxidative stress is connected somehow to nuclear mutations.' There's evidence that iron-sulfur cluster assembly defects in the mitochondria can be that connection."
-end-
The paper's authors are Silberg; Rice postdoctoral researchers Ryan McGuire and Kevin Hoff, who is also affiliated with the California Institute of Technology; Rice graduate student Peter Nguyen; and Stephanie Culler, a postdoctoral scholar, and Christina Smolke, an assistant professor of chemical engineering, both at CalTech.

The American Heart Association, Friedreich's Ataxia Research Alliance and Robert A. Welch Foundation supported the study.

Read the paper online at http://www.cell.com/chemistry-biology/abstract/S1074-5521(09)00402-5

Rice University

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.