New research contains solutions to common pear disease

December 28, 2010

CORVALLIS, OR - Diseases caused by a species of fungus called Phytophthora syringae are responsible for significant economic losses on a wide range of plants, including pear. In the Pacific Northwest region of the United States, disease occurs during the winter in nursery stock, especially on trees that are harvested and stored in coolers or in outdoor sawdust beds. Recent field observations by growers suggest that increased nitrogen content in nursery trees resulting from foliar sprays with urea in the autumn increases tree susceptibility to infection by Phytophthora syringae. The results of new research suggest the relationship between tree susceptibility to P. syringae and tree nitrogen concentration may be specific to the form of nitrogen, delivery method, or timing of nitrogen applications.

Researchers from Oregon State University's Department of Horticulture and the USDA-Agricultural Research Service published a study in HortTechnology that contains new answers for nursery operators. The experiments investigated the effects of soil nitrogen (N) availability and spraying pear trees with combinations of urea, chelated copper ethylenediaminetetraacetic acid (CuEDTA), and phosphonate-containing fungicides on stem N concentration and susceptibility to infection by P. syringae.

Experimental results showed that spraying trees with urea in the autumn increased concentrations of nitrogen and amino acids in stems and had no significant effect on tree susceptibility when stems were inoculated with P. syringae before or after urea sprays. Spraying with CuEDTA decreased stem nitrogen concentrations and had no significant influence on tree susceptibility to P. syringae when stems were inoculated before or after CuEDTA sprays, while spraying with fungicides containing fosetyl-aluminum in October or November decreased tree susceptibility to P. syringae. The effects of fungicides containing fosetyl-aluminum on susceptibility were similar regardless of whether trees were sprayed or not with urea or CuEDTA. According to the report, the results suggest that these fungicides can be used in combination with urea or CuEDTA sprays for reducing disease severity caused by P. syringae without impacting growers' objective of increasing tree N content with urea or enhancing early defoliation with CuEDTA.

The authors concluded that spraying trees with a combination of urea and CuEDTA with phosphonate- containing fungicides in early autumn can be of benefit for early harvesting and preventing the contamination and/or infection of P. syringae in the field or storage. "Spraying pear trees with a combination of urea and CuEDTA after terminal buds have set in early autumn can benefit nursery operators because the pathogen is less active in warm dry environments and the trees are better able to heal wounds caused by defoliation or chemical treatments", they noted.
-end-
The complete study and abstract are available on the ASHS HortTechnology electronic journal web site: http://horttech.ashspublications.org/cgi/content/abstract/20/2/331

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

American Society for Horticultural Science

Related Nitrogen Articles from Brightsurf:

Chemistry: How nitrogen is transferred by a catalyst
Catalysts with a metal-nitrogen bond can transfer nitrogen to organic molecules.

Illinois research links soil nitrogen levels to corn yield and nitrogen losses
What exactly is the relationship between soil nitrogen, corn yield, and nitrogen loss?

Reducing nitrogen with boron and beer
The industrial conversion of nitrogen to ammonium provides fertiliser for agriculture.

New nitrogen products are in the air
A nifty move with nitrogen has brought the world one step closer to creating a range of useful products -- from dyes to pharmaceuticals -- out of thin air.

'Black nitrogen'
In the periodic table of elements there is one golden rule for carbon, oxygen, and other light elements.

A deep dive into better understanding nitrogen impacts
This special issue presents a selection of 13 papers that advance our understanding of cascading consequences of reactive nitrogen species along their emission, transport, deposition, and the impacts in the atmosphere.

How does an increase in nitrogen application affect grasslands?
The 'PaNDiv' experiment, established by researchers of the University of Bern on a 3000 m2 field site, is the largest biodiversity-ecosystem functioning experiment in Switzerland and aims to better understand how increases in nitrogen affect grasslands.

Reducing reliance on nitrogen fertilizers with biological nitrogen fixation
Crop yields have increased substantially over the past decades, occurring alongside the increasing use of nitrogen fertilizer.

Flushing nitrogen from seawater-based toilets
With about half the world's population living close to the coast, using seawater to flush toilets could be possible with a salt-tolerant bacterium.

We must wake up to devastating impact of nitrogen, say scientists
More than 150 top international scientists are calling on the world to take urgent action on nitrogen pollution, to tackle the widespread harm it is causing to humans, wildlife and the planet.

Read More: Nitrogen News and Nitrogen Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.