Nav: Home

New pharmacon allows testicular tumors to shrink

December 28, 2016

Testicular cancer is the most common malignant tumor disease in men between 20 and 40 years of age. It can usually be treated well. In some cases, however, the cancer hardly responds or does not respond at all to treatment. A substance that was originally destined to be an innovative contraceptive is offering new hope in these cases. An experimental drug with the cryptic name JQ1 blocks sperm maturation and was discussed to be a male contraceptive. Instead, it may be suitable for cancer therapy.

JQ1 belongs to a new class of drugs with far-reaching abilities: its members fundamentally influence which genes in the cell are active and which are not. The hereditary material DNA is similar to an extremely long strip of Morse code, on which the assembly instructions for the cellular molecules are found. To fit into the cell nuclei, this strip of Morse code is wrapped around small protein balls at regular intervals - the histones. Histones and DNA together resemble a string of pearls.

However, the histones do not only play a structural role. They also feature chemical tags - called methyl or acetyl groups. These tags signal to the synthesis machinery in the cell whether the strip of Morse code should be read at this point or not. "JQ1 inhibits those proteins that read these histone marks and thus changes the gene activity in the cell," explains Prof. Hubert Schorle from the Institute for Pathology at the University of Bonn.

The cancer cells react very sensitive to these changes: they activate a suicide program, called apoptosis. "In a testicular cancer mouse model, the tumors began to shrink after administering JQ1," explains the lead author of the study, Sina Jostes. "In contrast, healthy skin cells seem to tolerate JQ1 very well."

Especially effective in combination

Besides JQ1, other drugs that alter the marks of the histones are also known. One of these is romidepsin. The laboratory in Bonn was recently able to show that romidepsin is also very effective at fighting testicular cancer cells. Unlike JQ1, romidepsin is already approved for the treatment of patients with certain types of cancer.

"In our study, we treated mice with both JQ1 and romidepsin," explains Dr. Daniel Nettersheim, who helped in planning and performing the studies. "This way, we achieved a similar effect alike JQ1 or romidepsin treatment alone, but we could reduce the quantities of both substances. Such a combination therapy to treat testicular tumors may be much better tolerated. Chemotherapy-resistant patients could also benefit from this." However, clinical studies are now needed to move the treatment towards the clinics.

Besides scientists from the University of Bonn, the studies also involved researchers from the University of St. Gallen (Switzerland) and Harvard Medical School (USA).
-end-
Publications:

Sina Jostes, Daniel Nettersheim, Martin Fellermeyer, Simon Schneider, Francois Hafezi, Friedemann Honecker, Valerie Schumacher, Matthias Geyer, Glen Kristiansen and Hubert Schorle: The bromodomain inhibitor JQ1 triggers growth arrest and apoptosis in testicular germ cell tumours in vitro and in vivo; Journal of Cellular and Molecular Medicine; DOI: 10.1111/jcmm.13059

Daniel Nettersheim, Sina Jostes, Martin Fabry, Friedemann Honecker, Valerie Schumacher, Jutta Kirfel, Glen Kristiansen and Hubert Schorle: A signaling cascade including ARID1A, GADD45B and DUSP1 induces apoptosis and affects the cell cycle of germ cell cancers after romidepsin treatment; Oncotarget; DOI: 10.18632/oncotarget.11647

University of Bonn

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
More Cancer News and Cancer Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...