Engineers hack cell biology to create 3-D shapes from living tissue

December 28, 2017

Many of the complex folded shapes that form mammalian tissues can be recreated with very simple instructions, UC San Francisco bioengineers report December 28 in the journal Developmental Cell. By patterning mechanically active mouse or human cells to thin layers of extracellular matrix fibers, the researchers could create bowls, coils, and ripples out of living tissue. The cells collaborated mechanically through a web of these fibers to fold themselves up in predictable ways, mimicking natural developmental processes.

"Development is starting to become a canvas for engineering, and by breaking the complexity of development down into simpler engineering principles, scientists are beginning to better understand, and ultimately control, the fundamental biology," says senior author Zev Gartner, part of the Center for Cellular Construction at the University of California, San Francisco. "In this case, the intrinsic ability of mechanically active cells to promote changes in tissue shape is a fantastic chassis for building complex and functional synthetic tissues."

Labs already use 3D printing or micro-molding to create 3D shapes for tissue engineering, but the final product often misses key structural features of tissues that grow according developmental programs. The Gartner lab's approach uses a precision 3D cell-patterning technology called DNA-programmed assembly of cells (DPAC) to set up an initial spatial template of a tissue that then folds itself into complex shapes in ways that replicate how tissues assemble themselves hierarchically during development.

"We're beginning to see that it's possible to break down natural developmental processes into engineering principles that we can then repurpose to build and understand tissues," says first author Alex Hughes, a postdoctoral fellow at UCSF. "It's a totally new angle in tissue engineering."

"It was astonishing to me about how well this idea worked and how simply the cells behave," Gartner says. "This idea showed us that when we reveal robust developmental design principles, what we can do with them from an engineering perspective is only limited by our imagination. Alex was able to make living constructs that shape-shifted in ways that were very close to what our simple models predicted."

Gartner and his team are now curious to learn whether they can stitch the developmental program that control tissue folding together with others that control tissue patterning. They also hope to begin to understand how cells differentiate in response to the mechanical changes that occur during tissue folding in vivo, taking inspiration from specific stages of embryo development.
-end-
This work was funded by a Jane Coffin Childs postdoctoral fellowship, the National Institutes of Health, the Department of Defense Breast Cancer Research Program, the NIH Common Fund, the Chan-Zuckerberg Biohub Investigator Program, the National Science Foundation, the UCSF Program in Breakthrough Biomedical Research, and the UCSF Center for Cellular Construction.

Developmental Cell, Hughes et al.: "Engineered Tissue Folding by Mechanical Compaction of the Mesenchyme" http://www.cell.com/developmental-cell/fulltext/S1534-5807(17)30989-9

Developmental Cell (@Dev_Cell), published by Cell Press, is a bimonthly, cross-disciplinary journal that brings together the fields of cell biology and developmental biology. Articles provide new biological insight of cell proliferation, intracellular targeting, cell polarity, membrane traffic, cell migration, stem cell biology, chromatin regulation and function, differentiation, morphogenesis and biomechanics, and regeneration and cellular homeostasis. Visit: http://www.cell.com/developmental-cell. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.