Navy enlists microbes to cut costs

December 29, 2003

Microbes have been exploited for thousands of years to help us make bread and alcohol, and more recently, to make antibiotics and clean up toxic spills. Now the Office of Naval Research is hoping the one-celled organisms will reduce the costs of producing a missile propellant, and in the process, lead to a new age of "bioproduction."

With funding from ONR's Green Synthesis of Energetic Materials program, microbiologist John Frost and his team at Michigan State University created strains of microbes that convert certain types of sugars into a non-natural synthetic material, called butanetriol. The Navy depends on the slightly yellow liquid to produce the propellant BTTN (butanetriol trinitrate), which is used in some missiles, including the Hellfire.

Biologist and ONR program officer Harold Bright initiated the green project three years ago when he learned that chemists at the Navy Surface Warfare Center in Indian Head, Md., couldn't afford adequate supplies of chemically-produced butanetriol. To fill the gap they use nitroglycerin, which is less expensive but more sensitive to physical shocks and temperature changes.

Currently, butanetriol costs $30 to $40 per pound, and together the Navy and Army purchase about 15,000 pounds per year. If the costs could be reduced to $10 or $15 per pound, Indian Head estimates the services' demand could rise to 180,000 pounds per year, replacing nitroglycerin in a number of current and new applications.

Bright adds, "This is a biology-unique process that in terms of environmental cleanliness and costs, chemists cannot match. Eventually, this 'green' production method will be applied to other materials, as we move away from petroleum-based processes that are environmentally 'dirty' and therefore expensive."

As they explain in the October issue of the Journal of the American Chemical Society, the researchers at Michigan State manipulated the DNA of Escherichia coli and Pseudomonas fragi so that the bacteria would act like minifactories, spewing out butanetriol as they go about their normal life functions. This process is "at the cutting edge of both civilian and military science," explains Bright.

In contrast to the high-pressure, high-temperature chemical process to produce butanetriol, the microbes require only air, sugar, and salts in a warm-water environment. Once they've produced the butanetriol and lived out their lives, they are killed and then disposed of in a standard municipal sewage treatment facility.

As an added bonus, butanetriol is also a precursor to two cholesterol-lowering drugs. Says Frost, "This is a classic example of dual use for molecules between pharmaceutical and defense applications."

Office of Naval Research

Related Microbes Articles from Brightsurf:

A new look at deep-sea microbes
Microbes found deeper in the ocean are believed to have slow population turnover rates and low amounts of available energy.

Microbes might manage your cholesterol
Researchers discover a link between human blood cholesterol levels and a gene in the microbiome that could one day help people manage their cholesterol through diet, probiotics, or entirely new types of treatment.

Can your gut microbes tell you how old you really are?
Harvard longevity researchers in collaboration with Insilico Medicine develop the first AI-powered microbiomic aging clock

What can be learned from the microbes on a turtle's shell?
Research published in the journal Microbiology has found that a unique type of algae, usually only seen on the shells of turtles, affects the surrounding microbial communities.

Life, liberty -- and access to microbes?
Poverty increases the risk for numerous diseases by limiting people's access to healthy food, environments and stress-free conditions.

Rye is healthy, thanks to an interplay of microbes
Eating rye comes with a variety of health benefits. A new study from the University of Eastern Finland now shows that both lactic acid bacteria and gut bacteria contribute to the health benefits of rye.

Gut microbes may affect the course of ALS
Researchers isolated a molecule that may be under-produced in the guts of patients.

Gut microbes associated with temperament traits in children
Scientists in the FinnBrain research project of the University of Turku discovered that the gut microbes of a 2.5-month-old infant are associated with the temperament traits manifested at six months of age.

Gut microbes eat our medication
Researchers have discovered one of the first concrete examples of how the microbiome can interfere with a drug's intended path through the body.

Microbes can grow on nitric oxide
Nitric oxide (NO) is a central molecule of the global nitrogen cycle.

Read More: Microbes News and Microbes Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to