Hebrew University researchers reach breakthrough on understanding persistent bacteria

December 29, 2013

Jerusalem, Dec. 29, 2013 - The mechanism by which some bacteria are able to survive antibacterial treatment has been revealed for the first time by Hebrew University of Jerusalem researchers. Their work could pave the way for new ways to control such bacteria.

In addition to the known phenomenon by which some bacteria achieve resistance to antibiotics through mutation, there are other types of bacteria, known as "persistent bacteria," which are not resistant to the antibiotics but simply continue to exist in a dormant or inactive state while exposed to antibacterial treatment. These bacteria later "awaken" when that treatment is over, resuming their detrimental tasks, presenting a dilemma as to how to deal with them.

Until now, it had been known that there is a connection between these kind of bacteria and the naturally occurring toxin HipA in the bacteria, but scientists did not know the cellular target of this toxin and how its activity triggers dormancy of the bacteria.

Now, the Hebrew University researchers, led by Prof. Gadi Glaser of the Faculty of Medicine and Prof. Nathalie Balaban of the Racah Institute of Physics, have been able to demonstrate how this comes about. Their research showed that when antibiotics attack these bacteria, the HipA toxin disrupts the chemical "messaging" process necessary for nutrients to build proteins. This is interpreted by the bacteria as a "hunger signal" and sends them into an inactive state, (dormancy) in which they are able to survive until the antibacterial treatment is over and they can resume their harmful activity.

The research on persistent bacteria has been conducted in Prof. Balaban's lab for several years, focusing on the development of a biophysical understanding of the phenomenon. It will be combined with other work being done in Prof. Glaser's laboratory focusing on combating persistent bacteria, in the hope of leading to more effective treatment for bacterial infections.
-end-
Working on the project in Prof. Glaser's lab were doctoral student Ilana Kaspy and in the lab of Prof. Balaban by doctoral students Eitan Rotem and Noga Weiss and Dr. Irine Ronin.

The Hebrew University of Jerusalem

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.