Nav: Home

A clue to generate electric current without energy consumption at room temperature

December 29, 2015

A group of researchers in Japan and China identified the requirements for the development of new types of extremely low power consumption electric devices by studying Cr-doped (Sb, Bi)2Te3 thin films. This study has been reported in Nature Communications.

At extremely low temperatures, an electric current flows around the edge of the film without energy loss, and under no external magnetic field. This attractive phenomenon is due to the material's ferromagnetic properties; however, so far, it has been unclear how the material gains this property. For the first time, researchers have revealed the mechanism by which this occurs. "Hopefully, this achievement will lead to the creation of novel materials that operate at room temperature in the future," said Akio Kimura, a professor at Hiroshima University and a member of the research group.

Their achievement can be traced back to the discovery of the quantum Hall effect in the 1980's, where an electric current flows along an edge (or interface) without energy loss. However, this requires both a large external magnetic field and an extremely low temperature. This is why practical applications have not been possible. Researchers believed that this problem could be overcome with new materials called topological insulators that have ferromagnetic properties such as those found in Cr-doped (Sb, Bi)2Te3.

A topological insulator, predicted in 2005 and first observed in 2007, is neither a metal nor an insulator, and has exotic properties. For example, an electric current is generated only at the surface or the edge of the material, while no electric current is generated inside it. It looks as if only the surface or the edge of the material has metallic properties, while on the inside it is an insulator.

At extremely low temperatures, a thin film made of Cr-doped (Sb, Bi)2Te3 shows a peculiar phenomenon. As the film itself is ferromagnetic, an electric current is spontaneously generated without an external magnetic field and electric current flows only around the edge of the film without energy loss. However, it was previously unknown as to why Cr-doped (Sb, Bi)2Te3 had such ferromagnetic properties that allowed it to generate electric current.

"That's why we selected the material as the object of our study," said Professor Kimura.

Because Cr is a magnetic element, a Cr atom is equivalent to an atomic-sized magnet. The N-S orientations of such atomic-sized magnets tend to be aligned in parallel by the interactions between the Cr atoms. When the N-S orientations of Cr atoms in Cr-doped (Sb, Bi)2Te3 are aligned in parallel, the material exhibits ferromagnetism. However, the interatomic distances between the Cr atoms in the material are, in fact, too long to interact sufficiently to make the material ferromagnetic.

The group found that the non-magnetic element atoms, such as the Sb and Te atoms, mediate the magnetic interactions between Cr atoms and serve as the glue to fix the N-S orientations of Cr atoms that face one direction. In addition, the group expects that its finding will provide a way to increase the critical temperature for relevant device applications.

The experiments for this research were mainly conducted at SPring-8. "We would not have achieved perfect results without the facilities and the staff there. They devoted themselves to detecting the extremely subtle magnetism that the atoms of non-magnetic elements exhibit with extremely high precision. I greatly appreciate their efforts," Kimura said.
-end-
Published article:

Ye, M. et al. Carrier-mediated ferromagnetism in the magnetic topological insulator Cr-doped (Sb,Bi)2Te3. Nat. Commun. 6:8913 doi: 10.1038/ncomms9913 (2015). http://www.nature.com/ncomms/2015/151119/ncomms9913/full/ncomms9913.html

Authors and their affiliations:

Mao Ye1,2, Wei Li1,2, Siyuan Zhu3, Yukiharu Takeda4, Yuji Saitoh4, Jiajia Wang5, Hong Pan6, Munisa Nurmamat3, Kazuki Sumida3, Fuhao Ji6, Zhen Liu6, Haifeng Yang1, Zhengtai Liu1, Dawei Shen1,2, Akio Kimura3, Shan Qiao1,2,5, and Xiaoming Xie1,2,5

1 State Key Laboratoryof Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences

2 CAS-Shanghai Science Research Center

3 Graduate School of Science, Hiroshima University

4 Condensed Matter Science Division, Quantum Beam Science Center, Japan Atomic Energy Agency

5 School of physical science and technology, ShanghaiTech University

6 Department of Physics, State Key Laboratory of Surface Physics, and Laboratory of Advanced Materials, Fudan University

Hiroshima University

Related Atoms Articles:

Stenciling with atoms in 2-dimensional materials possible
The possibilities for the new field of two-dimensional, one-atomic-layer-thick materials, including but not limited to graphene, appear almost limitless.
Microprocessors based on a layer of just 3 atoms
Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics.
Super sensitive devices work on recycling atoms
Next-generation sensors to be used in fields as diverse as mineral exploration and climate change will be turbo boosted thanks to University of Queensland and University of Sussex research.
Breakthrough with a chain of gold atoms
The precise control of electron transport in microelectronics makes complex logic circuits possible that are in daily use in smartphones and laptops.
Sorting machine for atoms
Physicists at the University of Bonn have cleared a further hurdle on the path to creating quantum computers: in a recent study, they present a method with which they can very quickly and precisely sort large numbers of atoms.
Boron atoms stretch out, gain new powers
Ribbons and single-atom chains of boron would have unique physical and electronic properties, according to theoretical physicists at Rice University.
ANU demonstrates 'ghost imaging' with atoms
A team of physicists at the Australian National University have used a technique known as 'ghost imaging' to create an image of an object from atoms that never interact with it.
'Weighing' atoms with electrons
The chemical properties of atoms depend on the number of protons in their nuclei, placing them into the periodic table.
New approach to determining how atoms are arranged in materials
Researchers have developed a novel approach to characterizing how atoms are arranged in materials, using Bayesian statistical methods to glean new insights into the structure of materials.
Magnetic atoms arranged in neat rows
Physicists at Friedrich-Alexander Universität Erlangen-Nürnberg and the Vienna University of Technology have successfully created one-dimensional magnetic atom chains for the first time.

Related Atoms Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...