New guidelines on clinical trial design for patients with brain metastases

December 29, 2017

Clinical trials of new anti-cancer therapies have often excluded patients whose disease has spread to the brain or central nervous system (CNS) or, if such patients were allowed on trial, trials have often failed to clearly capture information on the drug's effect in the brain. Today new guidelines from an international, multidisciplinary group published in the journal Lancet Oncology describe how to most appropriately address cancer patients with CNS involvement within clinical trials of anti-cancer drugs.

"Two major situations needed to be optimized. Firstly, as we've actually started to see some new anti-cancer drugs working well inside the brain, we needed to find a way to appropriately include these patients in clinical trials so that the trials could accurately capture that benefit. And secondly, for drugs that would be unlikely to work in the brain, we needed to limit risks to patients and to the drug development process," says D. Ross Camidge, MD, PhD, Joyce Zeff Chair in Lung Cancer Research at the University of Colorado Cancer Center, director of Thoracic Oncology at the CU School of Medicine and the lead author of the trial design guidelines.

The expert working group which developed these guidelines, called the Response Assessment in Neuro-Oncology - Brain Metastases (RANO-BM) group, also includes researchers from Dana-Farber Cancer Institute, City of Hope National Medical Center, Cleveland Clinic, University of Heidelberg in Germany, University of California at San Francisco, Queen's University in Canada, University of Groningen and Erasmus University Medical Center in the Netherlands, University of Turin in Italy, Massachusetts General Hospital, University of Virginia, M.D. Anderson Cancer Center, and Columbia University Medical Center.

"Historically, patients with brain metastases were excluded from the majority of systemic therapy trials for a number of reasons, including the misperception that they are poor clinical trial candidates. However, many studies show that select patients with brain metastases can safely enroll on clinical trials, without harm to the patient or to the drug development process," says Eudocia Lee, MD, MPH, assistant professor of Neurology at the Center for Neuro-Oncology at the Dana-Farber Cancer Institute and co-lead author of the guidelines.

The guidelines adopt a pragmatic approach, suggesting one of three specific strategies based on initial understanding of a drug's possible activity in the brain. First, when a new drug is considered very unlikely to have activity in the brain, patients with stable CNS disease should be permitted, while those with active CNS disease should be excluded from trials of systemic therapy. Second, if there is some initial evidence that a drug may have activity in the brain, the guidelines propose including patients with both stable and active CNS disease in a way that will capture data defining a drug's activity in the brain separate from its activity in the rest of the body. Third, when it's unclear whether a drug may have activity in the brain (as is often the case at the start of any new drug development process), the guidelines suggest including a dedicated cohort of patients with brain metastases very early in drug development to generate the data that would allow trial designers to adopt one of the other two trial designs.

The new guidelines reflect the contributors' firsthand experiences developing new targeted therapies across cancer subtypes.

"For some subtypes of breast cancer, including HER2-positive or triple-negative, the incidence of brain metastases in patients who have recurrent/metastatic disease approaches 50 percent. Making progress against these subtypes of breast cancer very much depends on developing new and better treatments for brain metastases. Our hope is that by providing investigators with a roadmap for clinical trial design, we can encourage more studies focused on this challenging clinical problem. These new guidelines aim to fundamentally change drug development for advanced cancers," says Nancy U. Lin, MD, clinical director of the Breast Oncology Center at the Susan F. Smith Center for Women's Cancers at Dana Farber Cancer Institute.

"Brain metastases are also very common in lung cancer and it would be very frustrating to have a patient with controlled brain disease excluded from a trial that could benefit them," says Camidge, who has been intimately involved with the development of targeted therapies against non-small cell lung cancer, including crizotinib, alectinib and brigatinib. "Similarly, we have also started to see anecdotal evidence of new targeted therapies working against metastases in the brain, but current clinical trial design leaves holes in the data. For example, many trials don't standardize capturing information on the use of prior radiotherapy in the brain and so in such cases it has been very hard to tell whether benefit in a patient's CNS disease was due to radiotherapy or to the drug. When trying to choose between treatments, it was clear that we needed to get serious about demanding better data quality with respect to the brain."

The new guidelines may be especially important for clinical trials addressing patients with cancer types that commonly spread to the brain, including non-small cell lung cancer, small cell lung cancer, HER2+ and triple-negative breast cancer, and melanoma, all of which become especially dangerous once reaching the central nervous system. In these conditions, the guidelines write that, "Exclusion of [brain metastasis] patients could remove half to two-thirds of the stage IV population."

"We all hope that these guidelines will represent a turning point in cancer drug development," Camidge says. "Over the next few years, changes in clinical trial design centered around generating and acting on early signals of a drug's CNS activity or lack thereof should radically decrease risk and increase the therapeutic potential of new drugs across many different cancers."
-end-


University of Colorado Anschutz Medical Campus

Related Breast Cancer Articles from Brightsurf:

Oncotarget: IGF2 expression in breast cancer tumors and in breast cancer cells
The Oncotarget authors propose that methylation of DVDMR represents a novel epigenetic biomarker that determines the levels of IGF2 protein expression in breast cancer.

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.

Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.

More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.

Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.

Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.

Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.

Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.

Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.

Read More: Breast Cancer News and Breast Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.