Toward a molecular explanation for schizophrenia

December 30, 2013

Surprisingly little is known about schizophrenia. It was only recognized as a medical condition in the past few decades, and its exact causes remain unclear. Since there is no objective test for schizophrenia, its diagnosis is based on an assortment of reported symptoms. The standard treatment, antipsychotic medication, works less than half the time and becomes increasingly ineffective over time.

Now, Prof. Illana Gozes - the Lily and Avraham Gildor Chair for the Investigation of Growth Factors, the director of the Adams Super Center for Brain Studies at the Sackler Faculty of Medicine, and a member of the Sagol School of Neuroscience at Tel Aviv University - has discovered that an important cell-maintenance process called autophagy is reduced in the brains of schizophrenic patients. The findings, published in Nature's Molecular Psychiatry, advance the understanding of schizophrenia and could enable the development of new diagnostic tests and drug treatments for the disease.

"We discovered a new pathway that plays a part in schizophrenia," said Prof. Gozes. "By identifying and targeting the proteins known to be involved in the pathway, we may be able to diagnose and treat the disease in new and more effective ways."

Graduate students Avia Merenlender-Wagner, Anna Malishkevich, and Zeev Shemer of TAU, Prof. Brian Dean and colleagues of the University of Melbourne, and Prof. Galila Agam and Joseph Levine of Ben Gurion University of the Negev and Beer Sheva's Psychiatry Research Center and Mental Health Center collaborated on the research.

Mopping up

Autophagy is like the cell's housekeeping service, cleaning up unnecessary and dysfunctional cellular components. The process - in which a membrane engulfs and consumes the clutter - is essential to maintaining cellular health. But when autophagy is blocked, it can lead to cell death. Several studies have tentatively linked blocked autophagy to the death of brain cells seen in Alzheimer's disease.

Brain-cell death also occurs in schizophrenics, so Prof. Gozes and her colleagues set out to see if blocked autophagy could be involved in the progression of that condition as well. They found RNA evidence of decreased levels of the protein beclin 1 in the hippocampus of schizophrenia patients, a brain region central to learning and memory. Beclin 1 is central to initiating autophagy -- its deficit suggests that the process is indeed blocked in schizophrenia patients. Developing drugs to boost beclin 1 levels and restart autophagy could offer a new way to treat schizophrenia, the researchers say.

"It is all about balance," said Prof Gozes. "Paucity in beclin 1 may lead to decreased autophagy and enhanced cell death. Our research suggests that normalizing beclin 1 levels in schizophrenia patients could restore balance and prevent harmful brain-cell death."

Next, the researchers looked at protein levels in the blood of schizophrenia patients. They found no difference in beclin 1 levels, suggesting that the deficit is limited to the hippocampus. But the researchers also found increased levels of another protein, activity-dependent neuroprotective protein (ADNP), discovered by Prof. Gozes and shown to be essential for brain formation and function, in the patients' white blood cells. Previous studies have shown that ADNP is also deregulated in the brains of schizophrenia patients.

The researchers think the body may boost ADNP levels to protect the brain when beclin 1 levels fall and autophagy is derailed. ADNP, then, could potentially serve as a biomarker, allowing schizophrenia to be diagnosed with a simple blood test.

An illuminating discovery

To further explore the involvement of ADNP in autophagy, the researchers ran a biochemical test on the brains of mice. The test showed that ADNP interacts with LC3, another key protein regulating autophagy - an interaction predicted by previous studies. In light of the newfound correlation between autophagy and schizophrenia, they believe that this interaction may constitute part of the mechanism by which ADNP protects the brain.

Prof. Gozes discovered ADNP in 1999 and carved a protein fragment, NAP, from it. NAP mimics the protein nerve cell protecting properties. In follow-up studies Prof. Gozes helped develop the drug candidate davunetide (NAP). In Phase II clinical trials, davunetide (NAP) improved the ability of schizophrenic patients to cope with daily life. A recent collaborative effort by Prof. Gozes and Dr. Sandra Cardoso and Dr. Raquel Esteves showed that NAP improved autophagy in cultures of brain-like cells. The current study further shows that NAP facilitates the interaction of ADNP and LC3, possibly accounting for NAP's results in schizophrenia patients. The researchers hope NAP will be just the first of their many discoveries to improve understanding and treatment of schizophrenia.
-end-
American Friends of Tel Aviv University supports Israel's leading, most comprehensive and most sought-after center of higher learning, Tel Aviv University (TAU). Rooted in a pan-disciplinary approach to education, TAU is internationally recognized for the scope and groundbreaking nature of its research and scholarship -- attracting world-class faculty and consistently producing cutting-edge work with profound implications for the future. TAU is independently ranked 116th among the world's top universities and #1 in Israel. It joins a handful of elite international universities that rank among the best producers of successful startups.

American Friends of Tel Aviv University

Related Schizophrenia Articles from Brightsurf:

Schizophrenia: When the thalamus misleads the ear
Scientists at the University of Geneva (UNIGE) and the Synapsy National Centre of Competence in Research (NCCR) have succeeded in linking the onset of auditory hallucinations - one of the most common symptoms of schizophrenia - with the abnormal development of certain substructures of a region deep in the brain called the thalamus.

Unlocking schizophrenia
New research, led by Prof. LIU Bing and Prof. JIANG Tianzi from the Institute of Automation of the Chinese Academy of Sciences and their collaborators have recently developed a novel imaging marker that may help in the personalized medicine of psychiatric disorders.

Researchers discover second type of schizophrenia
In a study of more than 300 patients from three continents, over one third had brains that looked similar to healthy people.

New clues into the genetic origins of schizophrenia
The first genetic analysis of schizophrenia in an ancestral African population, the South African Xhosa, appears in the Jan.

Dietary supplement may help with schizophrenia
A dietary supplement, sarcosine, may help with schizophrenia as part of a holistic approach complementing antipsychotic medication, according to a UCL researcher.

Schizophrenia: Adolescence is the game-changer
Schizophrenia may be related to the deletion syndrome. However, not everyone who has the syndrome necessarily develops psychotic symptoms.

Study suggests overdiagnosis of schizophrenia
In a small study of patients referred to the Johns Hopkins Early Psychosis Intervention Clinic (EPIC), Johns Hopkins Medicine researchers report that about half the people referred to the clinic with a schizophrenia diagnosis didn't actually have schizophrenia.

The ways of wisdom in schizophrenia
Researchers at UC San Diego School of Medicine report that persons with schizophrenia scored lower on a wisdom assessment than non-psychiatric comparison participants, but that there was considerable variability in levels of wisdom, and those with higher scores displayed fewer psychotic symptoms.

Recognizing the uniqueness of different individuals with schizophrenia
Individuals diagnosed with schizophrenia differ greatly from one another. Researchers from Radboud university medical center, along with colleagues from England and Norway, have demonstrated that very few identical brain differences are shared amongst different patients.

Resynchronizing neurons to erase schizophrenia
Today, a decisive step in understanding schizophrenia has been taken.

Read More: Schizophrenia News and Schizophrenia Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.