The value of museum collections for development of DNA barcode libraries

December 30, 2013

The ability to sequence the DNA of plants and animals has revolutionized many areas of biology, but the unstable character of DNA poses difficulties for sequencing specimens in museum collection over time. In an attempt to answer these issues, a recent study of 31 target spider species from the Naturalis Biodiversity Center in Leiden, discovers that both time and body size are significant factors in determining which specimens can produce DNA barcode sequences. The study was published in a special issue of the open access journal ZooKeys.

The specimens contained in the world's natural history museums are the basis for most of what scientists know about biodiversity. Much like libraries, natural history museums are responsible for the long term preservation of their collections while circulating loans to active scientists. Museum curation techniques were developed over hundreds of years and optimized for anatomical preservation, and are often not ideal for preserving tissues for DNA sequencing.

DNA barcoding is an approach to the study of biodiversity that involves sequencing a standard region from the genome of an unidentified specimen and comparing it to a library of identified reference sequences representing many species. The success of this approach is in part dependent on the completeness of the library of reference sequences. When building such a reference library, specimens must either be freshly collected or taken from an existing collection.

The question addressed in this study is can we predict which specimens in a museum collection are likely to yield a successful DNA barcode sequence? If so, we can optimize our resources, wisely select museum specimens to sequence, and plan fresh collections to supplement. This study focused on Dutch spiders.

31 target species that have been frequently collected in the Netherlands over several decades and deposited in the Naturalis Biodiversity Center in Leiden were selected. For each target species, a series of increasingly older specimens was selected and brought to the lab for DNA sequencing. This was supplemented with freshly collected material representing nearly 150 Dutch spider species. The scientists recorded which specimens successfully produced DNA barcode sequences and which failed. They also experimented with DNA extraction techniques.

Typically, DNA extraction begins with the removal of muscle tissue; this is destructive extraction. An alternative approach is to soak the specimen in a solution that releases DNA from cells but does little or no damage to anatomy; this is nondestructive extraction. They found that failure rates for DNA barcode sequencing rise with time since collection, but body size is also a significant factor.

For freshly collected specimens overall, body size is not a predictor of sequencing success or failure. But larger species have a longer DNA barcoding shelf life than smaller species. Nondestructuve extraction techniques can significantly improve the chances of obtaining a DNA barcode sequence. Considering only the commonly applied destructive extraction method, small spiders are useful for only a few years while those with a body length of around 3 mm or more have a good chance of yielding a barcode sequence for about 20 years after collection.

But using nondestructive extraction, even small spiders with a body length of 4 mm or less have a good chance of yielding a DNA barcode sequence for about 15 years after collection while spiders above this size can yield barcode sequences for a considerably longer time. The success of nondestructive extraction demonstrated here coupled with the need to preserve museum specimens for a variety of research purposes bodes well for museum collections are source material for DNA barcode libraries.
-end-
Original Source:

Miller JA, Beentjes KK, van Helsdingen P, IJland S (2013) Which specimens from a museum collection will yield DNA barcodes? A time series study of spiders in alcohol. In: Nagy ZT, Backeljau T, De Meyer M, Jordaens K (Eds) DNA barcoding: a practical tool for fundamental and applied biodiversity research. ZooKeys 365: 245-261. doi: 10.3897/zookeys.365.5787

Pensoft Publishers

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.