Field trial with lignin modified poplars shows potential for bio-based economy

December 30, 2013

The results of a field trial with genetically modified poplar trees in Zwijnaarde, Belgium, shows that the wood of lignin modified poplar trees can be converted into sugars in a more efficient way. These sugars can serve as the starting material for producing bio-based products like bio-plastics and bio-ethanol.

The results of the field trial have been published in a scientific article in which the results of a field trial of French colleagues of the INRA institute in Orleans have also been incorporated. The article has been published in the online edition of PNAS of 30 December 2013*.

The field trial however also showed that the suppression of the lignin biosynthesis in the trees is variable. In some trees the suppression is stronger than in other trees which is visible through a more pronounced red coloration of the wood beneath the bark. Some branches show almost no red coloration, others a spotty pattern and again other a full red coloration. The branches with the highest red coloration produce 160% more ethanol. On the whole the ethanol yield per gram of wood is 20% higher. This in itself is positive, except for the fact that the modified trees appear to grow somewhat less rapid than non-modified poplar trees.

Prof. Wout Boerjan: "The branches with the highest red coloration give us hope that we will be able to achieve our goal in the future. The biosynthesis of lignin is very complex. We will now search for modifications that provide a strong and uniform suppression of the lignin biosynthesis. Because in the meantime we are also getting a pretty good idea of what causes the growth retardation, we immediately will start to work on poplars that grow normal, but still have a stable suppression of the lignin production. It must be possible to improve the ethanol yield per tree with 50 to 100%."

In the poplar trees in the field trial in Zwijnaarde in Belgium the so-called 'CCR-enzyme' is suppressed. This enzyme plays a key role in the biosynthesis of lignin, but its suppression apparently does not lead to a uniform lowering of the amount of lignin. In a new field trial that VIB will start in Wetteren, Belgium, in 2014, trees will be tested in which another enzyme has been suppressed: the 'CAD-enzyme'. In these trees also a more modern way of suppression of the enzyme has been used. This new trial therefore fits into the search for modifications that provide a more uniform suppression of the lignin biosynthesis.
-end-
* Van Acker et al., Improved saccharification and ethanol yield from field-grown transgenic poplar deficient in cinnamoyl-CoA reductase", PNAS Early Edition, December 30, 2013.

VIB (the Flanders Institute for Biotechnology)

Related Ethanol Articles from Brightsurf:

Spraying ethanol to nanofiber masks makes them reusable
A joint research team from POSTECH and Japan's Shinshu University evaluates the filtration efficiency of nanofiber and melt-blown filters when cleaned with ethanol.

Anaerobically disinfect soil to increase phosphorus using diluted ethanol
Anaerobic disinfection of soil is an effective method to kill unwanted bacteria, parasites and weeds without using chemical pesticides.

Fractionation processes can improve profitability of ethanol production
The US is the world's largest producer of bioethanol as renewable liquid fuel, with more than 200 commercial plants processing over 16 billion gallons per year.

Ethanol fuels large-scale expansion of Brazil's farming land
A University of Queensland-led study has revealed that future demand for ethanol biofuel could potentially expand sugarcane farming land in Brazil by 5 million hectares by 2030.

Measuring ethanol's deadly twin
ETH Zurich researchers have developed an inexpensive, handheld measuring device that can distinguish between methanol and potable alcohol.

Modified enzyme can increase second-generation ethanol production
Using a protein produced by a fungus that lives in the Amazon, Brazilian researchers developed a molecule capable of increasing glucose release from biomass for fermentation.

Scientists develop a chemocatalytic approach for one-pot reaction of cellulosic ethanol
Scientists at the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences have developed a chemocatalytic approach to convert cellulose into ethanol in a one-pot process by using a multifunctional Mo/Pt/WOx catalyst.

New core-shell catalyst for ethanol fuel cells
Scientists at Brookhaven Lab and the University of Arkansas have developed a highly efficient catalyst for extracting electrical energy from ethanol, an easy-to-store liquid fuel that can be generated from renewable resources.

Yeast makes ethanol to prevent metabolic overload
Why do some yeast cells produce ethanol? Scientists have wondered about this apparent waste of resources for decades.

Corncob ethanol may help cut China's greenhouse gas emissions
A new Biofuels, Bioproducts and Biorefining study has found that using ethanol from corncobs for energy production may help reduce greenhouse gas emissions in China, if used instead of starch-based ethanol.

Read More: Ethanol News and Ethanol Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.