Nav: Home

Better anchor roots help crops grow in poor soils

December 30, 2019

A metabolite in plants that regulates the growth of anchor roots--vital for sustaining water and nutrient uptake in plants--has been identified and may have useful applications in agriculture.

Pigment compounds called carotenoids are found in all plants and play a key role in successful photosynthesis and the generation of plant hormones and metabolites. These products are formed when enzyme activity causes carotenoid molecules to split--a process known as cleavage. While many carotenoid products are known to play key biological roles, less is known about one group of cleavage molecules called di-apocarotenoids.

"Di-apocarotenoids have rarely been characterized due to their instability and low abundance," says KAUST research scientist Kunpeng Jia, who worked on the project under the supervision of KAUST's Salim Al-Babili. "Indeed, we are only beginning to understand what their biological significance might be and what functions they have."

The KAUST researchers, in collaboration with scientists in the United States and Germany, conducted an extensive study on the presence and biological activities of di-apocarotenoids in Arabidopsis plants using developmental studies and state-of-the-art analytical chemistry techniques. Working with such inherently unstable compounds that have low molecular weights within plant tissues was a real challenge for Jianing Mi, from Al-Babili's team, who honed lab techniques to extract and analyze the molecules without damaging them.

"We identified the di-apocarotenoid anchorene as a metabolite that sends a specific signal to trigger the formation of Arabidopsis anchor roots," says Jia. "Because anchorene is a carotenoid product, correct carotenoid biosynthesis is also required for healthy root formation. We confirmed this using chemical inhibitors and Arabidopsis mutants."

Further experiments showed that anchorene modulates the distribution of the plant hormone auxin in the anchor root formation site, which stimulates growth. Jia and coworkers found that increasing anchorene levels in carotenoid-deficient plants rescued anchor root growth, while promoting growth in normal seedlings. When they modified anchorene's structure, it resulted in loss of activity.

"We'd like to explore the biological importance of anchorene further, and we also hope to understand exactly how plants produce this metabolite," says Jia. "We will also examine the biological activity of anchorene in crop plants because our findings may be relevant in boosting yields."

"Anchorene changes the root architecture by promoting anchor root formation, which increases root volume and facilitates water and nutrient absorption," adds Al-Babili. "Therefore, it may be possible to apply anchorene in nutrient-deficient soils to promote root growth."
-end-


King Abdullah University of Science & Technology (KAUST)

Related Molecules Articles:

Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.
Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.
How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan.
Breaking down stubborn molecules
Seawater is more than just saltwater. The ocean is a veritable soup of chemicals.
Shaping the rings of molecules
Canadian chemists discover a natural process to control the shape of 'macrocycles,' molecules of large rings of atoms, for use in pharmaceuticals and electronics.
The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.
Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.
Looking at the good vibes of molecules
Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy.
Colliding molecules and antiparticles
A study by Marcos Barp and Felipe Arretche from Brazil published in EPJ D shows a model of the interaction between positrons and simple molecules that is in good agreement with experimental results.
Discovery of periodic tables for molecules
Scientists at Tokyo Institute of Technology (Tokyo Tech) develop tables similar to the periodic table of elements but for molecules.
More Molecules News and Molecules Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.