How bacteria control their cell cycle

December 30, 2019

Researchers at the Biozentrum of the University have demonstrated how bacteria coordinate cell division with the replication of their genetic material. In an interdisciplinary study they explain why the current concept of the bacterial cell cycle has to be rewritten. The results were published in eLife.

Each living cell grows and divides, thus generating new offspring. This process is also known as the cell cycle. Strictly speaking, it describes a periodic repetition of two coordinated cycles: the duplication of a cell's genetic information on the one hand and cell division on the other. Although the cell cycle in plant and animal cells has been elucidated quite precisely in the past decades, it has remained unclear how these two processes are coordinated in bacteria.

DNA replication controls the cell cycle timing

Although it is natural to think that the cell cycle begins with the birth of the cell and ends with the next cell division, the new research argues for a major shift in this concept. Their findings show that, in bacteria, the cell cycle starts and ends with the initiation of DNA replication, with the cell division event occurring between two DNA replication events.

The researchers, led by Prof. Erik van Nimwegen at the Biozentrum of the University of Basel, used a highly interdisciplinary approach combining microfluidics, automated time-lapse microscopy, sophisticated image analysis, and computational modeling. They observed the behavior of individual E. coli cells over long periods of time and systematically quantified multiple variables describing growth, cell division and DNA replication for thousands of cell cycles in several growth conditions. Computational modelling was then applied to this data to uncover the control mechanisms of the cell cycle.

"Our model indicates that the cell cycle in E. coli starts with the initiation of DNA replication, at which point two different counters start running; one determining when the next cell division should occur, and the other determining when the next initiation of DNA replication should occur," explains Thomas Julou, head of the study. "Even though we have not yet identified the molecular basis of these two counters, the biomass produced since the last counter reset appears to be the variable controlling when the next division and replication events take place".

Studying fluctuations to reveal control mechanisms

In contrast to classical molecular biology approaches where the effects of mutations are analyzed, the current study uses a new approach in which analysis of the subtle fluctuations that normally growing cells exhibit is used to infer how the underlying process is controlled.

"A major challenge was to develop statistical methods to analyze the structure of the correlations in the fluctuations of cell cycle parameters such as cell size at birth," says Erik van Nimwegen. "A key new idea that we developed is that, instead of looking for correlations between variables, it is more informative to identify which variables appear to fluctuate independently of each other." This approach enabled the scientists to reveal the control mechanism of the bacterial cell cycle, but this method will be generally applicable to studying other biological processes and organisms.
-end-
Further information

Prof. Dr. Erik van Nimwegen, University of Basel, Biozentrum, Tel. +41 61 207 15 76, E-Mail: erik.vannimwegen@unibas.ch

University of Basel

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.