Nav: Home

Samara Polytech scientists has developed a new concept of mathematical modeling

December 30, 2019

A team of scientists from the Research Center "Fundamental Problems of Thermophysics and Mechanics" of the Samara Polytech is engaged in the construction of new mathematical models and the search for methods for their study in relation to a wide range of locally nonequilibrium transport processes in various physical systems. An innovative approach developed not so long ago is based on a modern version of third-generation thermodynamics. The project of scientists "Development, theoretical research and experimental verification of mathematical models of oscillatory processes, heat and mass transfer and thermomechanics with two- and multiphase delays" was among the winners of the RFBR contest. Recent research results are published in the journal Physica A: Statistical Mechanics and its Applications.

An interest in studying locally nonequilibrium processes that take into account the specifics of transport processes at the molecular level (the mean free path of a molecule, the momentum transfer rate, relaxation time, etc.) is dictated by the need to conduct various physical processes under extreme conditions, for example, femtosecond concentrated exposure to energy flows on matter, ultra-low and ultra-high temperatures and pressures, shock waves, etc. Such physical processes are widely used to create new technologies for producing nanomaterials and coatings with unique physicochemical properties that cannot be obtained by traditional methods (binary and multicomponent metal alloys, ceramics, polymeric materials, metal and semiconductor glasses, nanofilms, graphene, composite nanomaterials, etc.).

- Classical thermodynamics is not suitable for describing processes that occur under locally nonequilibrium conditions, since it is based on the principle of local equilibrium. Our project is important both for fundamental science and for practical applications, "explains the project manager, Professor Igor Kudinov. - To accomplish the tasks we plan to create a new, unparalleled software package designed for 3D modeling of high-speed locally nonequilibrium processes of heat, mass and momentum transfer. Thus, our method opens up wide possibilities for studying processes that are practically significant from the point of view of modern nanotechnology.
For reference:

The Center "Fundamental Problems of Thermophysics and Mechanics" was established on the basis of the Samara Polytechnic in 2018 with the aim of raising the level of fundamental scientific research in the field of theoretical materials science, mathematical modeling of locally nonequilibrium processes of heat, mass, momentum and electromagnetic vibration transfer.

Samara Polytech is a Flagship university, a powerful research and educational center and a leader in the preparation of elite engineering personnel. Scientists guide research and development in almost all strategic sectors: Petrochemistry, Oil and Gas Production and Processing, Energy, Information, Pharmaceutical and Food Technologies, Construction and Architecture. In addition, the university actively participates in the State Armament Program, in solving strategic problems of the region and implementing significant projects of federal significance. University graduates are famous Russian scientists, government officials, leaders of leading companies.

Samara Polytech (Samara State Technical University)

Related Mathematical Models Articles:

Mathematical modelling to prevent fistulas
It is better to invest in measures that make it easier for women to visit a doctor during pregnancy than measures to repair birth injuries.
New mathematical tool can select the best sensors for the job
In the 2019 Boeing 737 Max crash, the recovered black box from the aftermath hinted that a failed pressure sensor may have caused the ill-fated aircraft to nose dive.
The mathematical values of Linear A fraction signs
A recent study by a team based at the University of Bologna, published in the Journal of Archaeological Science, has shed new light on the Minoan system of fractions, one of the outstanding enigmas tied to the ancient writing of numbers.
The mathematical magic of bending grids
A mathematical discovery opens up new possibilities for architecture and design: For any desired curved surface a flat grid of straight bars can be calculated that can be folded out to the desired curved structure.
An ant-inspired approach to mathematical sampling
In a paper published by the Royal Society, a team of Bristol researchers observed the exploratory behaviour of ants to inform the development of a more efficient mathematical sampling technique.
New mathematical model can more effectively track epidemics
As COVID-19 spreads worldwide, leaders are relying on mathematical models to make public health and economic decisions.
Mathematical model could lead to better treatment for diabetes
MIT researchers have developed a mathematical model that can predict the behavior of glucose-responsive insulin in humans and in rodents.
New mathematical model for amyloid formation
Scientists report on a mathematical model for the formation of amyloid fibrils.
Mathematical modelling vital to tackling disease outbreaks
Predicting and controlling disease outbreaks would be easier and more reliable with the wider application of mathematical modelling, according to a new study.
A new mathematical approach to understanding zeolites
A system developed at MIT helps to identify zeolites that can readily transform into other zeolite forms, which are widely used as catalysts in industrial processes.
More Mathematical Models News and Mathematical Models Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.