Nav: Home

Life could have emerged from lakes with high phosphorus

December 30, 2019

Life as we know it requires phosphorus. It's one of the six main chemical elements of life, it forms the backbone of DNA and RNA molecules, acts as the main currency for energy in all cells and anchors the lipids that separate cells from their surrounding environment.

But how did a lifeless environment on the early Earth supply this key ingredient?

"For 50 years, what's called 'the phosphate problem,' has plagued studies on the origin of life," said first author Jonathan Toner, a University of Washington research assistant professor of Earth and space sciences.

The problem is that chemical reactions that make the building blocks of living things need a lot of phosphorus, but phosphorus is scarce. A new UW study, published Dec. 30 in the Proceedings of the National Academy of Sciences, finds an answer to this problem in certain types of lakes.

The study focuses on carbonate-rich lakes, which form in dry environments within depressions that funnel water draining from the surrounding landscape. Because of high evaporation rates, the lake waters concentrate into salty and alkaline, or high-pH, solutions. Such lakes, also known as alkaline or soda lakes, are found on all seven continents.

The researchers first looked at phosphorus measurements in existing carbonate-rich lakes, including Mono Lake in California, Lake Magadi in Kenya and Lonar Lake in India.

While the exact concentration depends on where the samples were taken and during what season, the researchers found that carbonate-rich lakes have up to 50,000 times phosphorus levels found in seawater, rivers and other types of lakes. Such high concentrations point to the existence of some common, natural mechanism that accumulates phosphorus in these lakes.

Today these carbonate-rich lakes are biologically rich and support life ranging from microbes to Lake Magadi's famous flocks of flamingoes. These living things affect the lake chemistry. So researchers did lab experiments with bottles of carbonate-rich water at different chemical compositions to understand how the lakes accumulate phosphorus, and how high phosphorus concentrations could get in a lifeless environment.

The reason these waters have high phosphorus is their carbonate content. In most lakes, calcium, which is much more abundant on Earth, binds to phosphorus to make solid calcium phosphate minerals, which life can't access. But in carbonate-rich waters, the carbonate outcompetes phosphate to bind with calcium, leaving some of the phosphate unattached. Lab tests that combined ingredients at different concentrations show that calcium binds to carbonate and leaves the phosphate freely available in the water.

"It's a straightforward idea, which is its appeal," Toner said. "It solves the phosphate problem in an elegant and plausible way."

Phosphate levels could climb even higher, to a million times levels in seawater, when lake waters evaporate during dry seasons, along shorelines, or in pools separated from the main body of the lake.

"The extremely high phosphate levels in these lakes and ponds would have driven reactions that put phosphorus into the molecular building blocks of RNA, proteins, and fats, all of which were needed to get life going," said co-author David Catling, a UW professor of Earth & space sciences.

The carbon dioxide-rich air on the early Earth, some four billion years ago, would have been ideal for creating such lakes and allowing them to reach maximum levels of phosphorus. Carbonate-rich lakes tend to form in atmospheres with high carbon dioxide. Plus, carbon dioxide dissolves in water to create acid conditions that efficiently release phosphorus from rocks.

"The early Earth was a volcanically active place, so you would have had lots of fresh volcanic rock reacting with carbon dioxide and supplying carbonate and phosphorus to lakes," Toner said. "The early Earth could have hosted many carbonate-rich lakes, which would have had high enough phosphorus concentrations to get life started."

Another recent study by the two authors showed that these types of lakes can also provide abundant cyanide to support the formation of amino acids and nucleotides, the building blocks of proteins, DNA and RNA. Before then researchers had struggled to find a natural environment with enough cyanide to support an origin of life. Cyanide is poisonous to humans, but not to primitive microbes, and is critical for the kind of chemistry that readily makes the building blocks of life.
-end-
The research was funded by the Simons Foundation's Collaboration on the Origins of Life.

For more information, contact Toner at 267-304-3488 or toner2@uw.edu and Catling at 206-543-8653 or dcatling@uw.edu.

Simons grant #: 511570

University of Washington

Related Phosphorus Articles:

Graphene heterostructures with black phosphorus, arsenic enable new infrared detectors
MIPT scientists and their colleagues from Japan and the U.S.
Recovering phosphorus from corn ethanol production can help reduce groundwater pollution
Dried distiller's grains with solubles (DDGS), a co-product from corn ethanol processing, is commonly used as feed for cattle, swine and poultry.
Chemists have managed to stabilize the 'capricious' phosphorus
An international team of Russian, Swedish and Ukrainian scientists has identified an effective strategy to improve the stability of two-dimensional black phosphorus, which is a promising material for use in optoelectronics.
Life could have emerged from lakes with high phosphorus
Life as we know it requires phosphorus, and lots of it.
Reassessing strategies to reduce phosphorus levels in the Detroit river watershed
In an effort to control the cyanobacteria blooms and dead zones that plague Lake Erie each summer, fueled by excess nutrients, the United States and Canada in 2016 called for a 40% reduction in the amount of phosphorus entering the lake's western and central basins, including the Detroit River's contribution.
Reduce, reuse, recycle: The future of phosphorus
Societies celebrate the discovery of this important element in 1669.
Lack of reporting on phosphorus supply chain dangerous for global food security
A new study from Stockholm University and University of Iceland shows that while Phosphorus is a key element to global food security, its supply chain is a black box.
Hydrogenation of white phosphorus leads way to safer chemical technology
White phosphorus is well-known for being a highly toxic compound with suffocating scent.
Rice cultivation: Balance of phosphorus and nitrogen determines growth and yield
Cluster of Excellence on Plant Sciences CEPLAS at the University of Cologne cooperates with partners from Beijing to develop new basic knowledge on nutrient signalling pathways in rice plants.
Ammonia by phosphorus catalysis
More than 100 years after the introduction of the Haber-Bosch process, scientists continue to search for alternative ammonia production routes that are less energy demanding.
More Phosphorus News and Phosphorus Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.