MicroRNAs, alternative splicing and the muscle proteome

December 31, 2006

As reported in the January 1 issue of G&D, a UCLA research team led by Dr. Douglas Black has shown how microRNAs regulate alternative splicing during muscle development. The researchers determined that the muscle-specific microRNA miR-133 targets the alternative splicing factor, nPTB, during early myogenesis. The resulting decrease in nPTB protein levels alters the splicing of muscle-specific mRNAs in such a way as to promote muscle cell differentiation. The targeting of this splicing factor allows the microRNA to control a larger temporal program of muscle cell gene expression through not just the direct translational regulation of mRNAs, but also by altering the splicing of important mRNAs.
-end-


Cold Spring Harbor Laboratory

Related Microrna Articles from Brightsurf:

Researchers identify microRNA that shows promise for hair regrowth
Researchers from North Carolina State University have identified a microRNA (miRNA) that could promote hair regeneration.

Atherosclerosis -- How a microRNA protects vascular integrity
Ludwig-Maximilian-Universitaet (LMU) in Munich researchers have discovered a hitherto unknown molecular function of a specific microRNA that preserves integrity of the endothelium and reduces the risk of atherosclerosis.

MicroRNA exhibit unexpected function in driving cancer
New research shows that both strands of microRNA cooperate to drive growth and aggressiveness across cancer types, suggesting that these molecules may be more central in deadly cancers than previously thought.

Investigators narrow in on a microRNA for treating multiple sclerosis
Investigators from Brigham and Women's Hospital have discovered a microRNA -- a small RNA molecule -- that increases during peak disease in a mouse model of MS and in untreated MS patients.

MicroRNA comprehensively analyzed
Messenger RNA transmits genetic information to the proteins, and microRNA plays a key role in the regulation of gene expression.

Novel strategy using microRNA biomarkers can distinguish melanomas from nevi
Melanoma is the least common but one of the most deadly skin cancers.

Methylation of microRNA may be a new powerful biomarker for cancer
Researchers from Osaka University found that levels of methylated microRNA were significantly higher in tissue and serum from cancer patients compared with that from normal controls.

New insight into microRNA function can give gene therapy a boost
Scientists at the University of Eastern Finland and the University of Oxford have shown that small RNA molecules occurring naturally in cells, i.e. microRNAs, are also abundant in cell nuclei.

Researchers unlock mysteries of complex microRNA oncogenes
A new collaborative study, led by researchers at McGill University's Goodman Cancer Research Centre (GCRC), and published in the journal Molecular Cell, uncovers novel functions for polycistronic microRNAs and showing how cancers such as lymphoma twist these functions to reorganize the information networks that control gene expression.

MicroRNA-like RNAs contribute to the lifestyle transition of Arthrobotrys oligospora
Lifestyle transition is a fundamental mechanism that fungi have evolved to survive and proliferate in different environments.

Read More: Microrna News and Microrna Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.