In lung cancer, silencing one crucial gene disrupts normal functioning of genome

December 31, 2008

PHILADELPHIA - While examining patterns of DNA modification in lung cancer, a team of international researchers has discovered what they say is a surprising new mechanism. They say that "silencing" of a single gene in lung cancer led to a general impairment in genome-wide changes in cells, contributing to cancer development and progression.

In the January 1, 2009, issue of Cancer Research, a journal of the American Association for Cancer Research, they also report finding a strong link between modification of the key gene, MTHFR, and tobacco use by lung cancer patients - even if the patient had smoked for a short period of time.

The findings reinforce tobacco's link to lung cancer development, but show that deactivating one specific gene through a process known as hypermethylation causes systemic dysfunction, or hypomethylation, in many genes, said the study's senior investigator, Zdenko Herceg, Ph.D., head of the Epigenetics Group at the International Agency for Research on Cancer (IARC).

"We found that tobacco-mediated hypermethylation of MTHFR, and consequent partial or complete silencing of the gene, may trigger global hypomethylation and deregulation of DNA synthesis, both of which may contribute to cancer development," he said.

This methylation process, which involves chemically modifying normal DNA in order to change its activity, is seen as an increasingly important factor contributing to so-called "epigenetic inheritance" in cancer development, Herceg said. An epigenetic event is when non-genetic factors cause a gene to change its expression, and this is different from cancer caused by mutated genes that produce errant protein.

"Tobacco smoke contains many carcinogens, most of which are believed to cause genome damage," he said. "While there is evidence that the mutations induced by these tobacco carcinogens do play an important role in cancer development, our study reveals the novel - and surprising - role that silencing of normal genes plays in development of lung cancer."

Cancer is often characterized by an imbalance in methylation, where hypermethylation (inactivation) in specific genes is accompanied by hypomethylation (a decrease in methylation in general) across many genes. But this process has not been well characterized, Herceg said.

In this study, researchers from IARC working with investigators from Russia, Canada, and the United States, quantified methylation patterns in a panel of five cancer-associated genes (CDH1, CDKN2A, GSTP1, MTHFR and RASSF1A) in tumor samples from 209 lung patients and in blood samples from 172 matched "healthy" volunteers.

Noncancerous lung tissue was also examined from 51 of the lung cancer patients.

Their analysis revealed that a high frequency of hypermethylation of MTHFR, RASSF1A and CDKN2A in lung tumors compared to control blood samples, but no significant increase in methylation levels of the other two genes.

Silencing of the RASSF1A and CDKN2A genes makes sense, said Herceg, because these are tumor suppressor genes known to be inactivated in lung cancer. But the role of MTHFR has been less clear, he said. The enzyme produced by the gene plays a role in processing amino acids into methionine, which the body uses to make proteins and other crucial molecules. Variants of MTHFR, for example, have been linked to increased risk of cardiovascular disease.

"Because the MTHFR gene product plays a role in the maintenance of the cell's pool of methionine, silencing of MTHFR is likely to contribute to global hypomethylation, a phenomenon almost universally observed in human cancer that has been overlooked in favor of gene promoter-associated hypermethylation," Herceg said.

Both global hypomethylation and hypermethylation "coexist in all tumors and can contribute to tumor development and progression through different mechanisms," he said. The researchers say that these two processes likely reinforce each other. Global hypomethylation associated with MTHFR inactivation contributes to development of cancer by destabilizing the chromosome and activating oncogenes.

The researchers also discovered that methylation levels in RASSF1A were influenced by gender - men were much more likely to express this abnormally - and that methylation levels of CDH1, CDKN2A, GSTP1 and RASSF1A were not associated with smoking.

While the findings contribute to the basic understanding of lung cancer development, they may also be useful in designing a "methylation signature" blood or sputum biomarker test to identify individuals who are at risk of developing the disease, the researchers say. "That may prove particularly beneficial in diagnosing patients exposed to passive smoking," Herceg said.
-end-
The mission of the American Association for Cancer Research is to prevent and cure cancer. Founded in 1907, AACR is the world's oldest and largest professional organization dedicated to advancing cancer research. The membership includes more than 28,000 basic, translational and clinical researchers; health care professionals; and cancer survivors and advocates in the United States and 80 other countries. The AACR marshals the full spectrum of expertise from the cancer community to accelerate progress in the prevention, diagnosis and treatment of cancer through high-quality scientific and educational programs. It funds innovative, meritorious research grants. The AACR Annual Meeting attracts more than 17,000 participants who share the latest discoveries and developments in the field. Special conferences throughout the year present novel data across a wide variety of topics in cancer research, treatment and patient care. The AACR publishes five major peer-reviewed journals: Cancer Research; Clinical Cancer Research; Molecular Cancer Therapeutics; Molecular Cancer Research; and Cancer Epidemiology, Biomarkers & Prevention. The AACR's most recent publication and its sixth major journal, Cancer Prevention Research, is dedicated exclusively to cancer prevention, from preclinical research to clinical trials. The AACR also publishes CR, a magazine for cancer survivors and their families, patient advocates, physicians and scientists. CR provides a forum for sharing essential, evidence-based information and perspectives on progress in cancer research, survivorship and advocacy.

American Association for Cancer Research

Related Lung Cancer Articles from Brightsurf:

State-level lung cancer screening rates not aligned with lung cancer burden in the US
A new study reports that state-level lung cancer screening rates were not aligned with lung cancer burden.

The lung microbiome may affect lung cancer pathogenesis and prognosis
Enrichment of the lungs with oral commensal microbes was associated with advanced stage disease, worse prognosis, and tumor progression in patients with lung cancer, according to results from a study published in Cancer Discovery, a journal of the American Association for Cancer Research.

New analysis finds lung cancer screening reduces rates of lung cancer-specific death
Low-dose CT screening methods may prevent one death per 250 at-risk adults screened, according to a meta-analysis of eight randomized controlled clinical trials of lung cancer screening.

'Social smokers' face disproportionate risk of death from lung disease and lung cancer
'Social smokers' are more than twice as likely to die of lung disease and more than eight times as likely to die of lung cancer than non-smokers, according to research presented at the European Respiratory Society International Congress.

Lung cancer therapy may improve outcomes of metastatic brain cancer
A medication commonly used to treat non-small cell lung cancer that has spread, or metastasized, may have benefits for patients with metastatic brain cancers, suggests a new review and analysis led by researchers at St.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Lung transplant patients face elevated lung cancer risk
In an American Journal of Transplantation study, lung cancer risk was increased after lung transplantation, especially in the native (non-transplanted) lung of single lung transplant recipients.

Proposed cancer treatment may boost lung cancer stem cells, study warns
Epigenetic therapies -- targeting enzymes that alter what genes are turned on or off in a cell -- are of growing interest in the cancer field as a way of making a cancer less aggressive or less malignant.

Are you at risk for lung cancer?
This question isn't only for people who've smoked a lot.

Read More: Lung Cancer News and Lung Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.