Trapped water cause of regular tremors under Vancouver Island: UBC researchers

December 31, 2008

University of British Columbia researchers are offering the first compelling evidence to explain regular tremors under Vancouver Island.

The Cascadia megathrust fault, named for its massive but infrequent earthquakes, runs along the length of North America's western coast from northern Vancouver Island to northern California and is the boundary between two of the Earth's tectonic plates. An area on the fault line - approximately 35 kilometres under Vancouver Island - has also seen surprisingly regular "slips," accompanied by small tremors - roughly every 14 months. The last tremors recorded in this area were in May and lasted for about month, although none were strong enough to be felt by humans.

Megathrust fault lines in the region where episodic tremors occur are structurally weak and prone to slip and slide, but until now scientists have been unable to explain why. In a study published in today's edition of the journal Nature, UBC researchers Pascal Audet, Michael Bostock, Nicolas Christensen and Simon Peacock demonstrate how water trapped in a portion of the fault area escapes periodically after pressure build-up, which in turn lubricates the tectonic plates and causes them to slip and slide.

"Scientists have offered different theories but this is the first detailed glimpse at the geological mechanics beneath the island," says lead author Audet, who conducted the study as a PhD student at UBC's Dept. of Earth and Ocean Sciences.

"While scientists are still a long way away from being able to predict earthquakes, this study brings us one step closer towards understanding the physical state of the megathrust fault and the earthquake cycle as a whole," says Audet, now a Miller Research Fellow at the University of California at Berkeley.

"Additional sensors on the Island, or expanding the sensor array into the waters west of Vancouver Island, could help researchers determine whether fault properties change over time, and where changes are most significant along the fault line," says Peacock, UBC Dean of Science and an expert in subduction zone areas, where tectonic plates dive into the Earth's mantle triggering great earthquakes and explosive volcanism.
-end-


University of British Columbia

Related Tectonic Plates Articles from Brightsurf:

Deep magma facilitates the movement of tectonic plates
A small amount of molten rock located under tectonic plates encourages them to move.

Lost and found: UH geologists 'resurrect' missing tectonic plate
A team of geologists at the University of Houston College of Natural Sciences and Mathematics believes they have found the lost plate known as Resurrection in northern Canada by using existing mantle tomography images.

Citizen scientists help geologists to identify earthquakes and tectonic tremors
A new study shows that citizen scientists can help professionals in identifying seismic events.

A new idea on how Earth's outer shell first broke into tectonic plates
Plate tectonics theory posits that Earth's outer shell is subdivided into plates that move relative to each other, concentrating most activity along the boundaries between plates, yet the scientific community has no firm concept on how plate tectonics got started.

Why the Victoria Plate in Africa rotates
The East African Rift System is a newly forming plate tectonic boundary at which the African continent is being separated into several plates.

New discovery could highlight areas where earthquakes are less likely to occur
Scientists from Cardiff University have discovered specific conditions that occur along the ocean floor where two tectonic plates are more likely to slowly creep past one another as opposed to drastically slipping and creating catastrophic earthquakes.

Yale finds a (much) earlier birth date for tectonic plates
Yale geophysicists reported that Earth's ever-shifting, underground network of tectonic plates was firmly in place more than 4 billion years ago -- at least a billion years earlier than scientists generally thought.

Research reveals possibly active tectonic system on the Moon
Strange spots scattered across the Moon's nearside where bedrock is conspicuously exposed are evidence of seismic activity set in motion 4.3 billion years ago that could be ongoing today, the researchers say.

Tectonic plates started shifting earlier than previously thought
Scientists examining rocks older than 3 billion years discovered that the Earth's tectonic plates move around today much as they did between 2 and 4 billion years ago.

Researchers discover a new, young volcano in the Pacific
Researchers from Tohoku University have discovered a new petit-spot volcano at the oldest section of the Pacific Plate.

Read More: Tectonic Plates News and Tectonic Plates Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.