CSHL team determines how precursors of gene-regulating small RNAs are sorted by cellular machinery

December 31, 2009

Cold Spring Harbor, NY - A team of scientists at Cold Spring Harbor Laboratory (CSHL) has determined a hierarchical set of criteria that explain how the molecular precursors of gene-regulating small RNAs are sorted by the cellular machinery.

Led by Benjamin Czech, a group working in the laboratory of CSHL Professor Gregory Hannon posed the question: can distinct patterns be observed in the process that unfolds when double-stranded RNAs enter the RNAi pathway? Shorthand for RNA interference, RNAi is a biological response to double-stranded RNA that can culminate in the regulation of gene expression. It has been observed in a vast range of organisms ranging from plants to worms to flies to man.

An enzyme called Dicer cuts double-stranded RNAs into smaller double-stranded pieces called duplexes. Czech, Hannon and colleagues propose rules governing the next step in the RNAi pathway, in which duplexes are sorted to proteins called Argonautes which are at the core of a molecular complex called RISC (the RNA-Induced Silencing Complex).

"Only one strand of each duplex is chosen," explains Czech, "and which one makes all the difference. In the fruit flies that we used as models for this series of experiments, the selection of one or another strand effectively determines whether the short RNA will seek out and regulate a gene, or whether it will perform another function such as protecting a cell against a viral invader."

The rules determining how a duplex is processed and sorted are discussed in a paper the team published recently in Molecular Cell. These include the overall arrangement of the nucleotides in the duplex; how many bases are paired; where they're paired and unpaired; and how tightly the ends of the duplex are stuck together.

"These rules for sorting are important for two reasons," according to Hannon, who is also an Investigator of the Howard Hughes Medical Institute. "One is that since small RNAs play critical biological roles in nearly every process, understanding which strands of the small RNAs entering RISC act as regulators of gene expression is critical for our fundamental understanding.

"The rules are also important because scientists are hoping to use small RNAs one day as therapeutics. By understanding the rules by which small RNAs are processed and sorted, we move closer to the goal of being able to manipulate the RNAi pathway, bend it to the purpose of addressing disease."
-end-
"Hierarchical Rules for Argonaute Loading in Drosophila" appeared in Molecular Cell, Vol. 36, No. 3. The authors are: Benjamin Czech, Rui Zhou, Yaniv Erlich, Julius Brennecke, Richard Binari, Christians Villalta, Assaf gordon, Norbert Perrimon and Gregory J. Hannon.

Cold Spring Harbor Laboratory (CSHL) is a private, not-for-profit research and education institution at the forefront of efforts in molecular biology and genetics to generate knowledge that will yield better diagnostics and treatments for cancer, neurological diseases and other major causes of human suffering.

For more information, visit www.cshl.edu.

Cold Spring Harbor Laboratory

Related RNA Articles from Brightsurf:

A new RNA catalyst from the lab
On the track of evolution: a catalytically active RNA molecule that specifically attaches methyl groups to other RNAs - a research group from the University of Würzburg reports on this new discovery in Nature.

Small RNA as a central player in infections
The most important pathogenicity factors of the gastric pathogen Helicobacter pylori are centrally regulated by a small RNA molecule, NikS.

RNA as a future cure for hereditary diseases
ETH Zurich scientists have developed an RNA molecule that can be used in bone marrow cells to correct genetic errors that affect protein production.

Bringing RNA into genomics
By studying RNA-binding proteins, a research consortium known as ENCODE (Encyclopedia of DNA Elements) has identified genomic sites that appear to code for RNA molecules that influence gene expression.

RNA key in helping stem cells know what to become
If every cell has the same genetic blueprint, why does an eye cell look and act so differently than a brain cell or skin cell?

RNA structures by the thousands
Researchers from Bochum and Münster have developed a new method to determine the structures of all RNA molecules in a bacterial cell at once.

New kind of CRISPR technology to target RNA, including RNA viruses like coronavirus
Researchers in the lab of Neville Sanjana, PhD, at the New York Genome Center and New York University have developed a new kind of CRISPR screen technology to target RNA.

Discovery of entirely new class of RNA caps in bacteria
The group of Dr. Hana Cahová of the Institute of Organic Chemistry and Biochemistry of the CAS, in collaboration with scientists from the Institute of Microbiology of the CAS, has discovered an entirely new class of dinucleoside polyphosphate 5'RNA caps in bacteria and described the function of alarmones and their mechanism of function.

New RNA mapping technique shows how RNA interacts with chromatin in the genome
A group led by scientists from the RIKEN Center for Integrative Medical Sciences (IMS) in Japan have developed a new method, RADICL-seq, which allows scientists to better understand how RNA interacts with the genome through chromatin--the structure in which the genome is organized.

Characterising RNA alterations in cancer
The largest and most comprehensive catalogue of cancer-specific RNA alterations reveals new insights into the cancer genome.

Read More: RNA News and RNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.