Mystery solved: Facial cancer decimating Tasmanian devils likely began in Schwann cells

December 31, 2009

Cold Spring Harbor, N.Y. - An international team of scientists led by a Cold Spring Harbor Laboratory (CSHL) investigator has discovered that the deadly facial tumors decimating Australia's Tasmanian devil population probably originated in Schwann cells, a type of tissue that cushions and protects nerve fibers.

The discovery stems from the team's effort to carry out a genetic analysis of tumor cells. Based on these data, the scientists have identified a genetic marker to accurately diagnose the facial cancers, called devil facial tumor disease (DFTD).

The findings, which open new avenues for research into treatments and vaccines, will appear in the journal Science on January 1. Elizabeth Murchison, Ph.D., of CSHL and the Australian National University, is lead author of the paper; the work was conducted with CSHL Professor and HHMI Investigator Greg Hannon, Ph.D., among others.

DFTD is a unique type of cancer that is transmitted from animal to animal via biting or other physical contact - one of only two cancers known to spread by this method, which transfers living cancer cells between individuals (the other cancer is found in dogs). The devils' tumors are mostly found on the face and mouth, but often spread to internal organs. With no diagnostic tests, treatments or vaccines currently available, this aggressive disease could wipe out the Tasmanian devil species in 25 to 35 years.

"Our findings represent a big step forward in the race to save the devils from extinction," says Murchison. The research has provided a method for scientists to distinguish between DFTD and other types of devil cancers. This could be critical in efforts to identify and isolate affected animals and contain the disease's spread.

The team's genetic analysis has confirmed that the tumors that spread from animal to animal are genetically identical - exact clonal copies, each having originated from a single line of cells. The team determined the identity of the originating cell by using advanced sequencing technology to uncover the tumors' "transcriptome" - the complete set of genes that are turned on in tumor cells. Comparing this readout to that from other tissues, the team found that the tumors' genetic signature best matched that of Schwann cells. How these nervous system cells spawned cancer is still a mystery.

"Now that we've taken a good look at the tumors' genetic profile, we can start hunting for genes and pathways involved in tumor formation," says Hannon. The team has also compiled a catalogue of devil genes that might influence the pathology and transmission of the tumor -- information that will be very useful in designing vaccines and other therapeutic strategies.
-end-
In addition to CSHL scientists, the research involved scientists from The Australian National University, The University of Tasmania, The Menzies Centre, The Tasmanian Department of Primary Industries and Water, The Walter and Eliza Hall Institute of Medical Research, MIT, The Broad Institute and Roche Applied Sciences.

"The Tasmanian devil transcriptome reveals Schwann cell origins of a clonally transmissible cancer" appears in Science on January 1. The full citation is: Elizabeth P. Murchison, Cesar Tovar, Arthur Hsu, Hannah S. Bender, Pouya Kheradpour, Clare A. Rebbeck, David Obendorf, Carly Conlan, Melanie Bahlo, Catherine A. Blizzard, Stephen Pyecroft, Alexandre Kreiss, Manolis Kellis, Alexander Stark, Timothy T. Harkins, Jennifer A. Marshall Graves, Gregory M. Woods, Gregory J. Hannon and Anthony T. Papenfuss.

Cold Spring Harbor Laboratory (CSHL) is a private, not-for-profit research and education institution at the forefront of efforts in molecular biology and genetics to generate knowledge that will yield better diagnostics and treatments for cancer, neurological diseases and other major causes of human suffering. For more information, visit www.cshl.edu.

Cold Spring Harbor Laboratory

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.