Jackson Laboratory researchers provide definitive proof for receptor's role in synapse development

December 31, 2012

Jackson Laboratory researchers led by Associate Professor Zhong-wei Zhang, Ph.D., have provided direct evidence that a specific neurotransmitter receptor is vital to the process of pruning synapses in the brains of newborn mammals.

Faulty pruning at this early developmental stage is implicated in autism-spectrum disorders and schizophrenia. The definitive evidence for N-methyl-D-aspartate receptor (NMDAR) in pruning has eluded researchers until now, but in research published in the Proceedings of the National Academy of Sciences, Zhang's lab had serendipitous help in the form of a mouse model containing brain cells lacking NMDAR side-by-side with cells containing the receptor.

Soon after birth, mammals' brains undergo significant development and change. Initially, large numbers of synapses form between neurons. Then, in response to stimuli, the synaptic connections are refined--some synapses are strengthened and others eliminated, or pruned.

In most synapses, glutamate serves as the neurotransmitter, and NMDAR, a major type of post-synaptic glutamate receptor, was previously known to play an important role in neural circuit development. Previous research has implicated the importance of NMDARs in pruning, but it remained unclear whether they played a direct or indirect role.

Zhang and colleagues focused on the thalamus, a brain region where synapse pruning and strengthening can be monitored and quantified with relative ease. They got unexpected help when they realized the mouse model they were using had thalamus cells lacking NMDARs right next to cells with normal NMDAR levels.

The researchers showed that the refinement process was disrupted in the absence of NMDARs. At the same time, neighboring neurons with the receptors proceeded through normal synaptic strengthening and pruning, clearly establishing the necessity of NMDARs in postsynaptic neurons for synaptic refinement.

"Whenever I give a talk or meet colleagues," Zhang says, "the first question that comes up is whether the NMDA receptor is important. It's good that this is now settled definitively."

There has been extensive research into synaptic strengthening, and most of these studies indicate that the presence of NMDARs may support the recruitment of larger numbers of another kind of glutamate receptor to strengthen the synaptic connections. How NMDARs regulate the pruning process remains largely unknown, however.
-end-
The Jackson Laboratory is an independent, nonprofit biomedical research institution based in Bar Harbor, Maine, with a facility in Sacramento, Calif., and a new genomic medicine institute in Farmington, Conn. It employs a total staff of more than 1,400. Its mission is to discover precise genomic solutions for disease and empower the global biomedical community in the shared quest to improve human health.

Jackson Laboratory

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.