New studies give strong boost to binary-star formation theory

December 31, 2013

Using the new capabilities of the upgraded Karl G. Jansky Very Large Array (VLA), scientists have discovered previously-unseen binary companions to a pair of very young protostars. The discovery gives strong support for one of the competing explanations for how double-star systems form.

Astronomers know that about half of all Sun-like stars are members of double or multiple-star systems, but have debated over how such systems are formed.

"The only way to resolve the debate is to observe very young stellar systems and catch them in the act of formation," said John Tobin, of the National Radio Astronomy Observatory (NRAO). "That's what we've done with the stars we observed, and we got valuable new clues from them," he added.

Their new clues support the idea that double-star systems form when a disk of gas and dust whirling around one young star fragments, forming another new star in orbit with the first. Young stars that still are gathering matter from their surroundings form such disks, along with jet-like outflows rapidly propelling material in narrow beams perpendicular to the disk.

When Tobin and an international team of astronomers studied gas-enshrouded young stars roughly 1,000 light-years from Earth, they found that two had previously-unseen companions in the plane where their disks would be expected, perpendicular to the direction of the outflows from the systems. One of the systems also clearly had a disk surrounding both young stars.

"This fits the theoretical model of companions forming from fragmentation in the disk," Tobin said. "This configuration would not be required by alternative explanations," he added.

The new observations add to a growing body of evidence supporting the disk-fragmentation idea. In 2006, a different VLA observing team found an orbiting pair of young stars, each of which was surrounded by a disk of material. The two disks, they found, were aligned with each other in the same plane. Last year, Tobin and his colleagues found a large circumstellar disk forming around a protostar in the initial phases of star formation. This showed that disks are present early in the star formation process, a necessity for binary pairs to form through disk fragmentation.

"Our new findings, combined with the earlier data, make disk fragmentation the strongest explanation for how close multiple star systems are formed," said Leslie Looney of NRAO and the University of Illinois.

"The increased sensitivity of the VLA, produced by a decade-long upgrade project completed in 2012, made the new discovery possible," Claire Chandler of NRAO said.

The new capability was particularly valuable at the VLA's highest frequency band, from 40-50 GHz, where dust in the disks surrounding young stars emits radio waves. The astronomers observed the young stars during 2012 with the VLA and with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) in California.

Tobin, Chandler, and Looney were part of a research team of astronomers from the U.S., Mexico, and the Netherlands. The scientists published their findings in the Astrophysical Journal.
The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

National Radio Astronomy Observatory

Related Star Formation Articles from Brightsurf:

Low-metallicity globular star cluster challenges formation models
On the outskirts of the nearby Andromeda Galaxy, researchers have unexpectedly discovered a globular cluster (GC) - a massive congregation of relic stars - with a very low abundance of chemical elements heavier than hydrogen and helium (known as its metallicity), according to a new study.

Astronomers turn up the heavy metal to shed light on star formation
Astronomers from The University of Western Australia's node of the International Centre for Radio Astronomy Research (ICRAR) have developed a new way to study star formation in galaxies from the dawn of time to today.

New observations of black hole devouring a star reveal rapid disk formation
When a star passes too close to a supermassive black hole, tidal forces tear it apart, producing a bright flare of radiation as material from the star falls into the black hole.

How galaxies die: New insights into the quenching of star formation
Astronomers studying galaxy evolution have long struggled to understand what causes star formation to shut down in massive galaxies.

The cosmic commute towards star and planet formation
Interconnected gas flows reveal how star-forming gas is assembled in galaxies.

Star formation project maps nearby interstellar clouds
Astronomers have captured new, detailed maps of three nearby interstellar gas clouds containing regions of ongoing high-mass star formation.

Scientists discover pulsating remains of a star in an eclipsing double star system
Scientists from the University of Sheffield have discovered a pulsating ancient star in a double star system, which will allow them to access important information on the history of how stars like our Sun evolve and eventually die.

Distant milky way-like galaxies reveal star formation history of the universe
Thousands of galaxies are visible in this radio image of an area in the Southern Sky, made with the MeerKAT telescope.

Cascades of gas around young star indicate early stages of planet formation
What does a gestating baby planet look like? New research in Nature by a team including Carnegie's Jaehan Bae investigated the effects of three planets in the process of forming around a young star, revealing the source of their atmospheres.

Massive exoplanet orbiting tiny star challenges planet formation theory
Astronomers have discovered a giant Jupiter-like exoplanet in an unlikely location -- orbiting a small red dwarf star.

Read More: Star Formation News and Star Formation Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to