Large-aperture planar lens antennas with gradient refractive index

December 31, 2013

It was recently shown that large-aperture lens antennas can be designed by using gradient-index (GRIN) metamaterials and that higher directivity and gain can be obtained than with traditional dielectric lens antennas. This provides an effective method to design high-performance lens antennas.

A paper titled "Three-dimensional large-aperture lens antennas with gradient refractive index," published in SCIENCE CHINA Information Sciences, 2013, No. 12, investigates the principles and performance of GRIN lens antennas from the perspectives of design, fabrication, and experiment.

Lens antennas have traditionally been of two different compositions: either the dielectric delay or the metal accelerating lens. These two lens types are designed to focus electromagnetic waves by means of special hyperbolic or ellipsoidal geometric configurations, which can incur many difficulties in design and fabrication. Classical lenses made of homogeneous dielectrics use curved surfaces to compensate for phase differences, while metamaterial lenses make use of gradients in refractive index to realize the required phase changes.

GRIN lenses offer several advantages: (1) a simple flat GRIN lens can be used to focus the electromagnetic waves and hence is easier to design and realize; (2) the impedance of a GRIN lens is easy to match with air, and hence little reflection loss exists to affect the antenna's efficiency; and (3) a wide range of indices of refraction can be obtained using metamaterials, making possible GRIN lenses that are much thinner than traditional ones.

In this work, three-dimensional GRIN lenses are fabricated using multilayer inhomogeneous drilling holes or square ring resonators, which possess the desirable characteristics of high gain, broad bandwidth, and dual polarization. Two impedance-matching layers are proposed for the two sides of the GRIN lens, yielding very low reflection coefficients.

In addition, an intriguing development has recently emerged in GRIN metamaterials--GRIN metasurfaces. By employing an idea similar to the GRIN slab lens to generate the required phase distributions, a GRIN metasurface can also be used to manipulate wavefronts for high-gain antenna performance.
-end-
This work was sponsored in part by the National Natural Science Foundation of China (grants 60990320, 60990321, 60990324, 61171024, 61171026, and 61138001), the National High-Tech R&D (863) Program (Nos. 2011AA010202 and 2012AA030402), and the 111 Project (No. 111-2-05).

See the article: ZHOU X Y, ZOU X Y, YANG Y, MA H F, CUI T J. Three-dimensional large-aperture lens antennas with gradient refractive index. SCIENCE CHINA Information Sciences, 2013, 56: 120410, doi:10.1007/s11432-013-5038-8.

http://info.scichina.com:8084/sciFe/EN/abstract/abstract512917.shtml

Science China Press Co., Ltd. (SCP) is a scientific journal publishing company of the Chinese Academy of Sciences (CAS). For 60 years, SCP takes its mission to present to the world the best achievements by Chinese scientists on various fields of natural sciences researches.

Science China Press

Related Metamaterials Articles from Brightsurf:

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''

Origami metamaterials show reversible auxeticity combined with deformation recoverability
New research by Northwestern Engineering and Georgia Institute of Technology expands the understanding of origami structures, opening possibilities for mechanical metamaterials to be used in soft robotics and medical devices.

Temporal aiming with temporal metamaterials
Achieving a controllable manipulation of electromagnetic waves is important in many applications.

VR and AR devices at 1/100 the cost and 1/10,000 the thickness in the works
Professor Junsuk Rho of the departments of mechanical engineering and chemical engineering and doctoral student in mechanical engineering Gwanho Yoon at POSTECH with the research team at Korea University have jointly developed moldable nanomaterials and a printing technology using metamaterials, allowing the commercialization of inexpensive and thin VR and AR devices.

Virtualized metamaterials opens door for acoustics application and beyond
Scientists from the Hong Kong University of Science and Technology (HKUST) have realized what they called a virtualized acoustic metamaterial, in digitizing material response to an impulse response stored in a software program.

In acoustic waves, engineers break reciprocity with 'spacetime-varying metamaterials'
Working in an emerging field known to as 'spacetime-varying metamaterials,' University at Buffalo engineers have demonstrated the ability to break reciprocity in acoustic waves.

Induced flaws in metamaterials can produce useful textures and behavior
A new Tel Aviv University study shows how induced defects in metamaterials -- artificial materials the properties of which are different from those in nature -- also produce radically different consistencies and behaviors.

Researchers use metamaterials to create two-part optical security features
Researchers have developed advanced optical security features that use a two-piece metamaterial system to create a difficult-to-replicate optical phenomenon.

Artificial intelligence (AI) designs metamaterials used in the invisibility cloak
The research group of Prof. Junsuk Rho, Sunae So and Jungho Mun of Department of Mechanical Engineering and Department of Chemical Engineering at POSTECH developed a design with a higher degree of freedom which allows to choose materials and to design photonic structures arbitrarily by using Deep Learning.

Scientists take a 'metamaterials' approach to earthquake damage
At the SSA 2019 Annual Meeting, seismologists from around the world will discuss how metamaterial theory might be applied to everything from developing deflective barriers to manipulating the layout of buildings within a city as a way to minimize the impact of damaging surface seismic waves.

Read More: Metamaterials News and Metamaterials Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.