Nav: Home

Scientists produce 'designer triacylglycerols' in industrial microalgae

December 31, 2018

Molecules of triacylglycerol (TAG), formed by attaching three molecules of fatty acid (FA) to a glycerol backbone, are the main constituents of vegetable oil in plants and fats in animals and humans. TAG plays an important role in cellular metabolism as a universal storage form and currency of energy, since its energy density is much greater than carbohydrates or proteins.

The health benefit of TAG molecules (TAGs) is dependent on which FA comprise the molecule. For example, linoleic acid (LA) can lower blood cholesterols and prevent atherosclerosis, while eicosapentaenoic acid (EPA) can treat hypertension and inflammation. Can the FA composition of TAGs be customized to create "designer" TAGs that carry tailored health benefits?

The answer is yes. A research team led by Prof. XU Jian from the Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences (CAS), has discovered two novel diacylglyceryl transferases (DGAT2s) that preferentially attach LA and EPA, respectively, to the glycerol backbone to form TAGs.

By modulating the ratio of these specialist enzymes in the cell, a strain bank of the industrial oleaginous microalga Nannochloropsis oceanica was created where the proportions of LA and EPA in TAGs varied by 18.7- and 34.7-fold, respectively.

LA and EPA are both "essential fatty acids" for humans. They are essential for human metabolism, but human genomes do not encode the enzymes that directly synthesize these fatty acids. Therefore, humans have to intake LA and EPA via plant or animal TAGs.

The discovery of novel DGATs that selectively assemble LA and EPA into microalgal TAGs thus lays the foundation for producing on a large scale "designer TAGs," whether present in nature or not, for tailored or even personalized health benefits.
-end-
The study, published in Molecular Plant, was supported by the National Natural Science Foundation of China (NSFC).

Chinese Academy of Sciences Headquarters

Related Fatty Acids Articles:

The ova of obese women have lower levels of omega-3 fatty acids
A study conducted by researchers from the UPV/EHU, Cruces Hospital, the IVI Clinic Bilbao and Biocruces Bizkaia shows that the oocytes of obese or overweight women have a different composition of fatty acids.
Scientists use light to convert fatty acids into alkanes
Researchers led by Prof. WANG Feng at the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences have reported that photocatalytic decarboxylation is an efficient alternate pathway for converting biomass-derived fatty acids into alkanes under mild conditions of ambient temperature and pressure.
Microbes from humics lakes produced omega-3 fatty acids from micropla
The environmental fate of microplastics has been difficult to trace.
Efficiently producing fatty acids and biofuels from glucose
Researchers have presented a new strategy for efficiently producing fatty acids and biofuels that can transform glucose and oleaginous microorganisms into microbial diesel fuel, with one-step direct fermentative production.
Omega-3 fatty acids tied to fewer childhood asthma symptoms
A six-month study of children from Baltimore City by Johns Hopkins Medicine researchers has added to evidence that having more omega-3 fatty acids in the diet results in fewer asthma symptoms triggered by indoor air pollution.
Could omega-3 fatty acids help prevent miscarriages?
A new study in mice reveals that omega-3s, a type of fat found in fish oil, reduces fetal and neonatal deaths, suggesting they could prevent some miscarriages in women.
Researchers reveal prostate tumors 'fed' by fatty acids
An international multidisciplinary study initiated by Melbourne scientists has shown a link between prostate cancer and the uptake of fatty acids by cancer cells.
A hidden route for fatty acids can make cancers resistant to therapy
Researchers from the lab of Prof. Sarah-Maria Fendt at the VIB-KU Leuven Center for Cancer Biology now demonstrate that certain tumor cells use an alternative -- previously unexplored -- pathway to produce fatty acids.
Sunscreen and cosmetics compound may harm coral by altering fatty acids
Although sunscreen is critical for preventing sunburns and skin cancer, some of its ingredients are not so beneficial to ocean-dwelling creatures.
New Parkinson's disease drug target revealed through study of fatty acids
A new study led by investigators from Brigham and Women's Hospital and Harvard Medical School has provided insights into the role of fatty acids and suggests that inhibiting a specific enzyme can protect against neurotoxicity.
More Fatty Acids News and Fatty Acids Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.