Nav: Home

Topological semimetals can generate sizable transverse thermoelectric figure of merit

December 31, 2019

The thermoelectric conversion efficiency of a particular material is determined by the value of its thermoelectric figure of merit zT. It is a complex function of the absolute temperature and several pertinent transport properties including the Seebeck coefficient, the electrical and thermal conductivities. These quantities are usually measured in parallel to each other, reflecting the longitudinal thermoelectric effect.

Optimization of zT in conventional thermoelectric materials meets severe limitations. For instance, one comes from the charge compensation of electrons and holes that contribute oppositely to the Seebeck effect. The other is the Wiedemann-Franz law that fundamentally ties the electrical and the thermal conductivity, making independent optimization of the two quantities impossible.

A recent paper of J. S. Xiang et al. published in Sci. China-Phys. Mech. Astron. has demonstrated a much larger transverse figure of merit in a topological semimetal in low magnetic fields, relative to its longitudinal counterpart. This simply resembles the much larger transverse (Hall) conductivity over its longitudinal counterpart that is generically observed in many topological semimetals in low fields.

The large transverse zT values in topological semimetal benefit from some of its inherent features. These include the coexistence of electrons and holes which, in the case of transverse thermoelectricity, will contribute additively to each other, and the topologically protected high charge mobility is, to a large extent, free of the lattice imperfection. Actually, the Dirac semimetal Cd3As2, which is focused in this paper, has a very high electron mobility in spite of its negligible lattice thermal conductivity for this reason.

More excitingly, topological semimetals can have excess transverse thermoelectric effect, known as anomalous Nernst effect, arising from the pronounced Berry curvature near the Fermi level. Furthermore, if one considers a magnetic topological semimetal, the large transverse thermoelectricity will appear in the absence of external field.

As the paper reads, the transverse thermoelectric effect offers some more merits over its longitudinal counterpart: one does not need two (n and p) types of thermoelectric materials for constructing one device; because the electrical and thermal currents are orthogonal and decoupled in this case, high electrical conductivity and low thermal conductivity desired for large transverse figure of merit can be easily realized by using an anisotropy compound.
-end-
This research was funded by the Ministry of Science and Technology of China (Grant Nos. 2017YFA0303100, and 2015CB921303), the National Natural Science Foundation of China (Grant Nos. 11774404, and 11474332), and the Chinese Academy of Sciences through the Strategic Priority Research Program (Grant No. XDB07020200).

See the article:

J. S. Xiang, S. L. Hu, M. Lyu, W. L. Zhu, C. Y. Ma, Z. Y. Chen, F. Steglich, G. F. Chen, and P. J. Sun, Large transverse thermoelectric figure of merit in a topological Dirac semimetal, Sci. China-Phys. Mech. Astron. 63, 237011 (2020). https://doi.org/10.1007/s11433-019-1445-4

Science China Press

Related Electrons Articles:

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.
Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.
Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.
Using light to put a twist on electrons
Method with polarized light can create and measure nonsymmetrical states in a layered material.
What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.
Electrons in rapid motion
Researchers observe quantum interferences in real-time using a new extreme ultra-violet light spectroscopy technique.
Taming electrons with bacteria parts
In a new study, scientists at the MSU-DOE Plant Research Laboratory report a new synthetic system that could guide electron transfer over long distances.
Hot electrons harvested without tricks
Semiconductors convert energy from photons into an electron current. However, some photons carry too much energy for the material to absorb.
Cooling nanotube resonators with electrons
In a study in Nature Physics, ICFO researchers report on a technique that uses electron transport to cool a nanomechanical resonator near the quantum regime.
New method for detecting quantum states of electrons
Researchers in the Quantum Dynamics Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) devised a new method -- called image charge detection -- to detect electrons' transitions to quantum states.
More Electrons News and Electrons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.