Nav: Home

Making blood on demand: How far have we come?

December 31, 2019

The reconstitution of the blood system in humans holds great therapeutic potential to treat many disorders, like blood cancers, sickle-cell anemia and others. Successful reconstitution requires the transplantation and engraftment of hematopoietic (or blood) stem cells (HSCs), which after reaching their niche, start producing all types of blood cells, including platelets, white and red blood cells.

In current clinical practice, this is carried out by infusing HSCs obtained from a matched donor who is immunologically compatible with the patient in need (allogeneic transplantation), or by the expansion of the patient's own HSCs in the lab, and then re-infusing them back into the patient (ex-vivo, autologous transplantation). However, the utility of both routes is currently limited by a number of factors. First, in the case of allogeneic transplantation, the scarcity of matched donors significantly increases the waiting time, which could be detrimental to the patient. Second, the ex vivo expansion of HSCs, whether allogeneic or autologous, has been a challenging task, due to the limited proliferative potential these cells exhibit in culture. These limitations have raised the need for other sources of HSCs that would alleviate the need for matched donors and yield functional HSCs in large quantities.

In 2007, Professor Shinya Yamanaka and colleagues demonstrated that somatic cells, like skin fibroblasts, could be reprogrammed back to a cellular state that resembled human embryonic stem cells (hESCs), which are a group of cells found in the blastocyst-stage human embryo and contribute solely to the development of the human fetus during pregnancy. The reprogrammed cells were termed, Induced Pluripotent Stem Cells (iPSCs). In addition to their developmental potential, human ESCs and iPS cells display unlimited proliferative potential in culture, which makes them an ideal source of cells for regenerative medicine in general and for hematopoietic differentiation to obtain possibly unlimited quantities of HSCs. Therefore, there has been a growing interest to harness the potential of these cells for treating blood disorders.

However, advancement in deriving functional HSCs from human pluripotent stem cells has been slow. This has been attributed to incomplete understanding of the molecular mechanisms underlying normal hematopoiesis. In this review, the authors discuss the latest efforts to generate HSCs capable of long-term engraftment and reconstitution of the blood system from human pluripotent stem cells. Stem cell research has witnessed milestone achievements in this area in the last couple of years, the significance of which are discussed and analyzed in detail.

The authors additionally discuss two highly important families of transcription factors in the context of hematopoiesis and hematopoietic differentiation, the Homeobox (HOX) and GATA proteins. These are thought of as master regulators, in the sense of having numerous transcriptional targets, which upon activation, could elicit significant changes in cell identity. The authors hypothesize that precise temporal control of the levels of certain members of these families during hematopoietic differentiation could yield functional HSCs capable of long-term engraftment.

The authors conclude the review with a summary of future perspectives, in which they discuss how newly developed techniques, like the deactivated-Cas9 (dCas9) gene-expression control system, can be utilized during the course of hematopoietic differentiation of pluripotent stem cells for precise temporal control of the aforementioned master regulators to achieve functional HSCs.
-end-
For more information please visit: http://www.eurekaselect.com/node/175820/article/hematopoietic-differentiation-of-human-pluripotent-stem-cells-hox-and-gata-transcription-factors-as-master-regulators

Bentham Science Publishers

Related Stem Cells Articles:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.
More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.
Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.
First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
More Stem Cells News and Stem Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.