Nav: Home

eDNA expands species surveys to capture a more complete picture

December 31, 2019

Tiny bits of DNA collected from waters off the West Coast allowed scientists to identify more species of marine vertebrates than traditional surveys with trawl nets. They also reflect environmental shifts such as unusual ocean temperatures that affect the organisms present, new research shows.

The findings published in Frontiers in Marine Science demonstrate that environmental DNA, or eDNA, can add valuable detail to longstanding marine surveys. They revealed the presence of important species that usually evade trawl nets such as great white sharks and salmon. Ongoing collection of eDNA can also help detect environmental changes when marine life shifts habitat with changes in the ocean, the study found.

"eDNA is adding details that we might not get any other way, and giving us a more complete picture," said Collin J. Closek, an Early Career Science fellow at the Center for Ocean Solutions at Stanford University. Closek is lead author of the paper with other scientists from Stanford University, University of California Santa Cruz, and NOAA's Southwest Fisheries Science Center.

Increasingly Powerful Genetic Tool

Marine life constantly sheds bits of genetic material into surrounding water. eDNA techniques capture that DNA from water samples and identify the species it comes from. New laboratory sequencing methods help scientists examine many samples at once. They have made eDNA an increasingly powerful tool for detecting the range of species that have passed through the water.

In fact, Closek said that collecting water samples and archiving them can provide a lasting record of the DNA record at a particular place and time. This allows scientists to tap that data years later.

"This helps us most in identifying species distribution," said Elliott Hazen, a research ecologist at the Southwest Fisheries Science Center and coauthor of the study. "With rapid sampling at unprecedented scales, once we understand what it is telling us, we can get a lot of information about marine life across a large area relatively quickly."

The method does not provide all the answers, though. For example, current eDNA sequencing results do not yet allow researchers to count the number or abundance of each species. They do not identify the age or size of the species represented. This means that eDNA will not replace traditional monitoring such as trawl or acoustic surveys any time soon.

Closek and his colleagues worked aboard the NOAA Ship Reuben Lasker in 2016 and 2017. They joined NOAA Fisheries' Rockfish Recruitment and Ecosystem Assessment Survey, which has evaluated the California current forage community since 1983. The eDNA team collected 131 one-liter samples of water in roughly the same places where the ship deployed trawl nets. They collected samples of juvenile rockfish and other forage species. Observers aboard the ship also simultaneously counted the number of marine mammals and seabirds seen during daytime hours. The scientists then compared the results.

It was the first survey of eDNA across such a wide geographic scale on the West Coast.

eDNA Identified Most Species Overall

The trawl surveys identified 28 types of fish over the two years, 11 of which were identified only in the trawl surveys and not by eDNA. By itself, eDNA identified 65 different marine vertebrates, both fish and marine mammals. Together eDNA and trawl surveys identified 80 different fish and marine mammals. They included baleen whales, porpoises, dolphins, seals and sea lions, said John Field, a research fisheries biologist at the Southwest Fisheries Science Center.

"The eDNA analysis detected both the fish and marine mammals in the habitats that we would expect to find them, which gives us greater confidence in the technology to provide accurate details of the species present across the ecosystem," he said. "It may sound basic, but this is an important step in validating this powerful new method of surveying marine life."

Comparing 2016 to 2017, there were differences between the organisms present and their distribution. In 2016 the remnant warmth from a marine heat wave known as "the Blob" was dissipating. Unusual warm-water species were widely spread through West Coast waters.

In 2017, more normal conditions returned. Many of those unusual organisms diminished and eDNA found greater differences between the marine vertebrates present in different areas. These results indicate that eDNA results can help track changes in the environment.

"We don't have the resources to survey everywhere for everything, and eDNA expands our reach," said Alexandria Boehm, a professor in the Department of Civil and Environmental Engineering at Stanford and senior author of the new study. "Now that we know that the methods are in some agreement, it validates the methods so that people feel more confident using eDNA."

NOAA Fisheries West Coast Region

Related Dna Articles:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.
Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.
Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.
Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.
Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.
Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.
Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
More DNA News and DNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.