Current Advanced Materials News and Events

Current Advanced Materials News and Events, Advanced Materials News Articles.
Sort By: Most Relevant | Most Viewed
Page 1 of 25 | 1000 Results
The magic angle of twisted graphene
Trapped tightly between two monolayers of carbon superimposed at a precise angle, electrons interact and can produce superconductivity. This is what UCLouvain's researchers reveal in an article published in Nature. This property allows electric power to circulate without any resistivity, without energy lost, within the nanostructure. (2021-02-23)

Spintronics: New production method makes crystalline microstructures universally usable
New storage and information technology requires new higher performance materials. One of these materials is yttrium iron garnet, which has special magnetic properties. Thanks to a new process, it can now be transferred to any material. Developed by physicists at Martin Luther University Halle-Wittenberg (MLU), the method could advance the production of smaller, faster and more energy-efficient components for data storage and information processing. The physicists have published their results in the journal ''Applied Physics Letters''. (2021-02-23)

Can bacteria make stronger cars, airplanes and armor?
Biological systems can harness their living cells for growth and regeneration, but engineering systems cannot. Until now.Researchers are harnessing living bacteria to create engineering materials that are strong, tolerant, and resilient. (2021-02-22)

Silver and gold nanowires open the way to better electrochromic devices
A Canadian team from the Institut national de la recherche scientifique (INRS) developed a new approach for foldable and solid devices. (2021-02-22)

Polymer film protects from electromagnetic radiation, signal interference
In a breakthrough report published in Advanced Materials engineers at the University of California, Riverside describe a flexible film using a quasi-one-dimensional nanomaterial filler that combines excellent electromagnetic shielding with ease of manufacture. (2021-02-22)

More sustainable recycling of plastics
Plastics belong to the most widely used materials, and they are vital components of all modern technologies. So far, it has been possible to recycle these valuable materials only to a limited extent. In order to offer novel solutions, chemists of Professor Stefan Mecking´s group at the University of Konstanz developed a more sustainable method for chemically recycling polyethylene-like plastics. The researchers use ''breaking-points'' on a molecular level to disassemble the plastic back to its molecular components. (2021-02-17)

Skoltech's recent achievement takes us one step closer to Mars
Scientists have developed an artificial intelligence (AI) system that enables processing images from autonomous greenhouses, monitoring plant growth, and automating the cultivation process. In their article, they share the experience in the scope of controlled-environment agriculture automation in the Antarctic station greenhouse facility called EDEN ISS. (2021-02-17)

Electrons living on the edge
University of Tsukuba researchers calculated the electronic structure of topological insulators excited by laser beams and found that massless states can be generated. This work may lead to a major advance in computer technology with circuits that generate less heat. (2021-02-17)

Tapping into waste heat for electricity by nanostructuring thermoelectric materials
Thermoelectric semiconductors can convert waste heat into useful electricity. However, obtaining lead-free semiconductors with high thermoelectric performance has proven to be difficult. Now, scientists from Chung-Ang University, Korea, have developed a novel strategy to produce tin telluride (SnTe) nanosheets directly from tin selenide nanosheets (SnSe), the latter of which are easier to fabricate. Their strategy paves the way for better nanostructuring in SnTe, which greatly enhances its thermoelectric properties. (2021-02-16)

A comparative study of surface hardness between two bioceramic materials
This study aimed to evaluate the setting behaviour of MTA Angelus and NeoMTA by comparing their hardness after placing them in dry and moist conditions. (2021-02-16)

Solution to puzzling phenomenon may open door to improved Cold Spray efficiency
An international team of researchers has solved a puzzling phenomenon whereby strangely beautiful, vortex-like structures appear between materials deposited onto engineering components used in multiple settings - from space shuttles to household items and everyday transport vehicles The discovery may ultimately improve the efficiency of the ''Cold Spray'' (CS) deposition process from which these structures are formed - a not-insignificant financial or functional consideration. (2021-02-16)

Getting the lead in
Researchers developed a low-cost, high-performance, sustainable lead-based anode for lithium-ion batteries that can power hybrid and all-electric vehicles. They also uncovered its previously unknown reaction mechanism during charge and discharge. (2021-02-16)

Dual character of excitons in the ultrafast regime: atomic-like or solid-like?
Researchers at Politecnico di Milano in collaboration with the Institute of Photonics and Nanotechnologies IFN-CNR and a theory group from the Tsukuba University (Japan) and the Max Plank Institute for the Structure and Dynamics of matter (Hamburg, Germany), have discovered that an exciton can simultaneously adopt two radically different characters when it isstimulated by light. (2021-02-15)

Graphene "nano-origami" creates tiniest microchips yet
A team of experimental physicists at the University of Sussex have developed the smallest microchips ever - 100 times smaller than conventional microchips. They believe that this next generation of microchips could lead to computers and phones running thousands of times faster. (2021-02-15)

Researchers demonstrate self-sterilizing polymers work against SARS-CoV-2
Researchers have demonstrated a family of self-sterilizing polymers that are effective at inactivating coronaviruses, including SARS-CoV-2 - the virus that causes COVID-19. The work opens the door to a suite of applications that could help to reduce the transmission of COVID-19 and other diseases. (2021-02-15)

A groundbreaking solution? Polymers can protect buildings from large fault ruptures
University of Technology Sydney researchers have developed a solution to protect buildings sitting on deep foundations from earthquakes resulting in surface fault ruptures. Their findings show a composite foundation system using inexpensive polymer materials can significantly improve the safety of infrastructure and substantially decrease fatality and damage due to large ground deformations. (2021-02-15)

Move over heavy goggles, here come the ultra-high refractive index lenses
POSTECH professor Junsuk Rho's research team develops a transparent silicon without visible light loss by controlling the silicon atomic structure. (2021-02-14)

Sweet coating for sour bones
Scientists invent a bioactive coating to improve the function of titanium implants in osteoporotic bones. This coating, comprising a chemically-modified glycan, can sequentially turn on and off inflammation on titanium surface upon implantation. This modulation stimulates the body's immune system to promote bone healing in an effective and safe way, without addition of bone-forming genes or drugs, according to the data from a rat osteoporotic model. (2021-02-12)

Vibrating 2D materials
Two-dimensional materials hold out hope for many technical applications. An international research team now has determined for the first time how strongly 2D materials vibrate when electronically excited with light. (2021-02-11)

A scalable method for the large-area integration of 2D materials
Graphene Flagship researchers report a new method to integrate graphene and 2D materials into semiconductor manufacturing lines, a milestone for the recently launched 2D-EPL project. (2021-02-10)

New insights put a freeze on the mechanisms for safely cryopreserving biological materials
The ability to freeze cells and even whole organs without damaging them, known as cryoprotection, is of considerable interest to medical practitioners, and scientists have experimented with chemicals called polyampholytes as cryoprotectants. In an article recently published in Communications Materials, a team of Japanese scientists now describes the mechanisms by which polyampholytes act to enable cryoprotection. Their insights may aid efforts to develop improved chemical cryoprotection technologies. (2021-02-09)

Researchers use hot nano-chisel to create artificial bones in a Petri dish
In research in the journal Advanced Functional Materials, a team at the NYU Tandon School of Engineering and New York Stem Cell Foundation Research Institute (NYSF) detail a system allowing them to sculpt, in a biocompatible material, the exact structure of the bone tissue, with features smaller than the size of a single protein -- a billion times smaller than a meter. (2021-02-09)

Scientists create armour for fragile quantum technology
An ANU-led international team has invented the equivalent of 'body armour' for extremely fragile quantum systems, which will make them robust enough to be used as the basis for a new generation of low-energy electronics. (2021-02-08)

Efficiency limits of next-generation hybrid photovoltaic-thermal solar technology
Spectral-splitting hybrid photovoltaic-thermal (SSPVT) technology has emerged as a promising route toward high-performance solar harvesting. In this research, scientists have developed a comprehensive framework for modelling SSPVT solar collectors. The framework can be used to determine the efficiency limits of such collectors and to indicate how these limits can be approached through the selection of optimal designs and materials. This work promotes and provides guidance to the design, development and deployment of next-generation solar systems. (2021-02-08)

Two-phase material with surprising properties
Some materials can couple electrical and mechanical properties - this can lead to astonishing effects: New materials have been developed, consisting of both crystalline and amorphous regions. In these special polymers, the electro-mechanical coupling suddenly disappers - scientits at TU Wien have found out how. (2021-02-08)

A magnetic twist to graphene
By combining ferromagnets and two rotated layers of graphene, researchers open up a new platform for strongly interacting states using graphene's unique quantum degree of freedom. (2021-02-08)

Packing more juice in lithium-ion batteries through silicon anodes and polymeric coatings
Although silicon anodes could greatly boost the capacity of Li-ion batteries, their performance rapidly degrades with use. Polymeric coatings can help solve this problem, but very few studies have explored the underlying mechanisms. In a recent study, scientists from Japan Advanced Institute of Science and Technology investigate how a poly(borosiloxane) coating greatly stabilizes the capacity of silicon anodes, paving the way for better and more durable Li-ion batteries for electric cars and renewable energy harvesting. (2021-02-05)

New way to power up nanomaterials for electronic applications
UCLA materials scientists and colleagues have discovered that perovskites, a class of promising materials that could be used for low-cost, high-performance solar cells and LEDs, have a previously unutilized molecular component that can further tune the electronic property of perovskites. (2021-02-05)

Scientists optimized technology for production of optical materials for microelectronics
Scientists of Far Eastern Federal University (FEFU) have advanced the technology of high-speed sintering for optical ceramics (Nd3+:YAG), i.e. active elements generating laser emission in the near-infrared wavelength range (1.06 μm) for cutting the edge microelectronics and medicine. The researchers have managed to reduce significantly the initial nanopowders consolidation period (10 - 100 times) forming a nanostructure with ensured high optical transparency of the ceramic material. A related article appears in Optical Materials. (2021-02-04)

Imaging technique provides link to innovative products
A study led by University of Georgia researchers announces the successful use of a new nanoimaging technique that will allow researchers to test and identify two-dimensional materials (2021-02-04)

Large-area periodic perovskite nanostructures for lenticular printing laser displays
We fabricated large-area periodic structures with spatial resolution at wavelength scale from hybrid perovskite materials via a space-confined solution growth method. It takes advantages of both high refractive index contrast and high luminescence brightness, which allows the optical modulation on not only the reflection of illumination, but also the light emission from hybrid perovskites. The distributed feedback within these periodic structures significantly improves the degree of polarization and directionality of laser action while its threshold is also reduced. (2021-02-04)

UTA engineers develop programming technology to transform 2D materials into 3D shapes
University of Texas at Arlington researchers have developed a technique that programs 2D materials to transform into complex 3D shapes. (2021-02-04)

Thanks to machine learning, the future of catalyst research is now!
To date, research in the field of combinatorial catalysts has relied on serendipitous discoveries of catalyst combinations. Now, scientists from Japan have streamlined a protocol that combines random sampling, high-throughput experimentation, and data science to identify synergistic combinations of catalysts. With this breakthrough, the researchers hope to remove the limits placed on research by relying on chance discoveries and have their new protocol used more often in catalyst informatics. (2021-02-03)

Dynamic 3D printing process features a light-driven twist
The speed of light has come to 3D printing. Northwestern University engineers have developed a new method that uses light to improve 3D printing speed and precision while also, in combination with a high-precision robot arm, providing the freedom to move, rotate or dilate each layer as the structure is being built. The method introduces the 'on-the-fly' ability to manipulate the original design layer by layer and pivot the printing direction without recreating the model. (2021-02-03)

Fine tuned: adjusting the composition and properties of semiconducting 2D alloys
Semiconducting 2D alloys could be key to overcoming the technical limitations of modern electronics. Although 2D Si-Ge alloys would have interesting properties for this purpose, they were only predicted theoretically. Now, scientists from Japan Advanced Institute of Science and Technology have realized the first experimental demonstration. They have also shown that the Si to Ge ratio can be adjusted to fine tune the electronic properties of the alloys, paving the way for novel applications. (2021-02-02)

NREL reports sustainability benchmarks for plastics recycling and redesign
Researchers developing renewable plastics and exploring new processes for plastics upcycling and recycling technologies will now be able to easily baseline their efforts to current manufacturing practices to understand if their efforts will save energy and reduce greenhouse gas emissions. Benchmark data calculated and compiled at the National Renewable Energy Laboratory (NREL) provide a measurement -- at the supply chain level -- of how much energy is required and the amount of greenhouse gases emitted from the production of a variety of plastics in the United States. (2021-02-02)

Skoltech imaging resources used in international experiment with new photocatalysts
Skoltech researchers helped their colleagues from Japan, Germany, the United States, and China study the crystal structure and optical properties of a new class of two-dimensional compounds, which can be used as effective visible-light-responsive photocatalysts for energy and chemical conversion. They used the Advanced Imaging Core Facility equipment for imaging and structural analysis. (2021-02-01)

Photonics research makes smaller, more efficient VR, augmented reality tech possible
Engineering researchers have developed and demonstrated a new approach for designing photonic devices. The advance allows them to control the direction and polarization of light from thin-film LEDs, paving the way for a new generation of virtual reality (VR) and augmented reality (AR) technologies. (2021-02-01)

A full-scale prototype for muon tomography
In this article of EPJ Plus, researchers build on previous studies into detection technologies and reconstruction algorithms for muon tomography, to develop a full-scale muon tomograph prototype. (2021-02-01)

Highly deformable piezoelectric nanotruss for tactile electronics
A KAIST research team confirmed the potential of tactile devices by developing ceramic piezoelectric materials that are three times more deformable. For the fabrication of highly deformable nanomaterials, the research team built a zinc oxide hollow nanostructure using proximity field nanopatterning and atomic layered deposition. (2021-02-01)

Page 1 of 25 | 1000 Results
   First   Previous   Next      Last is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to