Current Advanced Photon Source News and Events

Current Advanced Photon Source News and Events, Advanced Photon Source News Articles.
Sort By: Most Relevant | Most Viewed
Page 1 of 25 | 1000 Results
Silver and gold nanowires open the way to better electrochromic devices
A Canadian team from the Institut national de la recherche scientifique (INRS) developed a new approach for foldable and solid devices. (2021-02-22)

Fibre-integrated, high-repetition-rate water window soft X-ray source
The generation and characterization of light in the soft X-ray domain of the spectrum play an ever-growing role in advancing fundamental research, life science and industrial applications. To meet the continuous demand for powerful, application-oriented optical tools, scientists from Germany have developed a new laser-driven soft X-ray source with a fibre-integrated setup. The approach establishes a new route toward simple and powerful soft X-ray sources, which will enhance and expand applications of short-wavelength light. (2021-02-22)

LHC/ATLAS: A unique observation of particle pair creation in photon-photon collisions
Creation of matter in an interaction of two photons belongs to a class of very rare phenomena. From the data of the ATLAS experiment at the LHC, collected with the new AFP proton detectors at the highest energies available to-date, a more accurate - and more interesting - picture of the phenomena occurring during photon collisions is emerging. (2021-02-18)

3D-printing perovskites on graphene makes next-gen X-ray detectors
By using 3D aerosol jet-printing to put perovskites on graphene, scientists at EPFL have made X-ray detectors with record sensitivity that can greatly improve the efficiency and reduce the cost and health hazard of medical imaging devices. (2021-02-17)

Proton therapy induces biologic response to attack treatment-resistant cancers
Mayo Clinic researchers have developed a novel proton therapy technique to more specifically target cancer cells that resist other forms of treatment. The technique is called LEAP, an acronym for 'biologically enhanced particle therapy.' The findings are published today in Cancer Research, the journal of the American Association for Cancer Research. (2021-02-17)

Skoltech's recent achievement takes us one step closer to Mars
Scientists have developed an artificial intelligence (AI) system that enables processing images from autonomous greenhouses, monitoring plant growth, and automating the cultivation process. In their article, they share the experience in the scope of controlled-environment agriculture automation in the Antarctic station greenhouse facility called EDEN ISS. (2021-02-17)

Getting the lead in
Researchers developed a low-cost, high-performance, sustainable lead-based anode for lithium-ion batteries that can power hybrid and all-electric vehicles. They also uncovered its previously unknown reaction mechanism during charge and discharge. (2021-02-16)

Discovering structural diverseness of neurons between brain areas and between cases
Dr. Masanari Itokawa who is the vice president of Tokyo Metropolitan Institute of Medical Science and colleague by the collaboration with Japan Synchrotron Radiation Research Institute (JASRI/SPring-8) and Advanced Photon Source, Argonne National Laboratory identified that the schizophrenia cases showed a thin and tortuous neuronal network compared with the controls (2021-02-10)

Physicists finesse the storing of light to create rainbows of colour
Physicists at the University of Bath have found a way to use resonance to harness the energy of light more effectively inside microresonators. (2021-02-09)

AD diagnostics could become more accessible
A team of researchers from the Laboratory of Biophysics at NUST MISIS, Lomonosov Moscow State University and D. Mendeleev University of Chemical Technology of Russia has summarized metal-containing diagnostic agents for positron emission tomography (PET), magnetic resonance imaging (MRI), and single-photon emission computed tomography (SPECT) imaging of Alzheimer's disease (AD). According to the researchers, their use could improve access to diagnostic imaging of AD among the risk groups. (2021-02-09)

THz spectroscopy tracks electron solvation in photoionized water
''This work provides insights on the fundamental aspects of the charge transport process in water and lays a foundation for further understanding of the physicochemical properties and transient evolution of femtosecond-laser-pulse-excited plasma in water.'' (2021-02-09)

Half of global wastewater treated, rates in developing countries still lagging
A new study by scientists at Utrecht University and the United Nations University concludes that about half of global wastewater is treated, rather than the previous estimate of 20%. Despite this promising finding, the authors warn that treatment rates in developing countries are still very low. The study and its dataset were published Open Access in the journal Earth System Science Data. (2021-02-08)

3D-printed spectrometer on a 100 x100 μm² footprint
The miniaturisation of spectroscopic measurement devices opens novel information channels in medical science or consumer electronics. Scientists of the University of Stuttgart, Germany, developed a 3D-printed miniature spectrometer with a volume of 100 × 100 × 300 μm³ and a spectral resolution of up to 10 nm in the visible range. This spectrometer can be manufactured directly onto camera sensors, and a parallel arrangement allows for quick (''snapshot'') and low profile, highly customizable hyperspectral cameras. (2021-02-08)

An end to invasive biopsies?
Hebrew Unievrsity researchers have found a less invasive and more accurate options for diagnoses using a simple blood test that detects DNA fragments. (2021-02-08)

Breakthrough in quantum photonics promises a new era in optical circuits
In recently published work, researchers at USC have shown that single photons can be emitted in a uniform way from quantum dots arranged in a precise pattern. The team has used such methods to create single-quantum dots, with their remarkable single-photon emission characteristics. It is expected that the ability to precisely align uniformly-emitting quantum dots will enable the production of optical circuits, potentially leading to novel advancements in quantum computing and communications technologies (2021-02-05)

A new tool in the search for axions
Researchers have discovered a new avenue to search for axions--a hypothetical particle that is one of the candidates of dark matter particles. The group, which usually performs ultra-high precision measurements of the fundamental properties of trapped antimatter, has for the first time used the ultra-sensitive superconducting single antiproton detection system of their advanced Penning trap experiment as a sensitive dark matter antenna. (2021-02-04)

Inside the battery in 3D: Powerful X-rays watch solid state batteries charging and discharging
Using high-speed X-ray tomography, researchers captured images of solid-state batteries in operation and gained new insights that may improve their efficiency. (2021-02-03)

Researchers design next-generation photodetector
The new long-wavelength infrared photodetector from Professor Manijeh Razeghi could be used in night vision, optical communication, and thermal and medical imaging. (2021-02-02)

Skoltech imaging resources used in international experiment with new photocatalysts
Skoltech researchers helped their colleagues from Japan, Germany, the United States, and China study the crystal structure and optical properties of a new class of two-dimensional compounds, which can be used as effective visible-light-responsive photocatalysts for energy and chemical conversion. They used the Advanced Imaging Core Facility equipment for imaging and structural analysis. (2021-02-01)

Dalian coherent light source reveals the origin of interstellar medium S2 fragments
Researchers observed the C+S2 product channel from CS2 photodissociation for the first time using a home-made Time-Sliced Velocity Map Ion Imaging (TS-VMI) experimental setup, based on the Dalian Coherent Light Source (DCLS). (2021-01-28)

Physicists develop record-breaking source for single photons
Researchers at the University of Basel and Ruhr University Bochum have developed a source of single photons that can produce billions of these quantum particles per second. With its record-breaking efficiency, the photon source represents a new and powerful building-block for quantum technologies. (2021-01-28)

X-Ray tomography lets researchers watch solid-state batteries charge, discharge
Using X-ray tomography, a research team has observed the internal evolution of the materials inside solid-state lithium batteries as they were charged and discharged. Detailed three-dimensional information from the research could help improve the reliability and performance of the batteries, which use solid materials to replace the flammable liquid electrolytes in existing lithium-ion batteries. (2021-01-28)

Lasing mechanism found in water droplets
As reported in Advanced Photonics, Chen's NTU team recently discovered that when a water droplet interacts with a surface to form a contact angle, the interfacial molecular forces determine the geometry of a droplet resonator. Dramatic mechanical changes at the interface play a significant role in the optical oscillation of droplet resonators. (2021-01-28)

Breakthrough for laser-induced breakdown spectroscopy
Researchers under the leadership of Heping Zeng at East China Normal University in Shanghai recently demonstrated a novel technique: plasma-grating-induced breakdown spectroscopy (GIBS). (2021-01-28)

National laboratories' look to the future of light sources with new magnet prototype
After more than 15 years of work, scientists at three DOE national laboratories have succeeded in creating and testing an advanced, more powerful superconducting magnet made of niobium and tin for use in the next generation of light sources. (2021-01-28)

White turns into (extreme-)ultraviolet
Researchers from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI) have developed a new method to modify the spectral width of extreme-ultraviolet (XUV) light. By employing a novel phase-matching scheme in four-wave mixing, they could compress the spectral width of the initial broadband light by more than hundred times. The detailed experimental and theoretical results have been published in Nature Photonics. (2021-01-25)

Adding or subtracting single quanta of sound
Researchers perform experiments that can add or subtract a single quantum of sound--with surprising results when applied to noisy sound fields. (2021-01-25)

Squeezing a rock-star material could make it stable enough for solar cells
A promising lead halide perovskite is great at converting sunlight to electricity, but it breaks down at room temperature. Now scientists have discovered how to stabilize it with pressure from a diamond anvil cell. The required pressure is well within the reach of industrial manufacturing requirements. (2021-01-21)

Two-photon polymerization of PEGda hydrogel microstructure with low threshold power with green laser
The fabrication of shape-memory hydrogel scaffolds not only requires biocompatibility, micrometre resolution, high mechanical strength, but also requires a low polymerisation threshold in high-water content environment to incorporate microstructures with biological tissues. Towards this goal, scientists from China and australite developed a new hydrogel formula that full fills this goal and demonstrated water-responsive structures with a shape-memory effect at a micrometre scale. This work is of importance for the development future reversible microdevices in biomedical engineering. (2021-01-20)

Researchers discover mechanism behind most severe cases of a common blood disorder
G6PD deficiency affects about 400M people worldwide and can pose serious health risks. Now, researchers think they've found the cause of the most severe cases, which could finally lead to treatments. (2021-01-19)

Do simulations represent the real world at the atomic scale?
A multidisciplinary research team has developed a strategy to validate computer simulations of oxide/water interfaces at the atomic scale using X-ray reflectivity experiments. Such interfaces are key in many energy applications. (2021-01-19)

Latch, load and release: Elastic motion makes click beetles click, study finds
Click beetles can propel themselves more than 20 body lengths into the air, and they do so without using their legs. While the jump's motion has been studied in depth, the physical mechanisms that enable the beetles' signature clicking maneuver have not. A new study examines the forces behind this super-fast energy release and provides guidelines for studying extreme motion, energy storage and energy release in other small animals like trap-jaw ants and mantis shrimps. (2021-01-18)

NUS engineers create 'smart' aerogel that turns air into drinking water
Researchers from NUS Engineering have developed a new aerogel that autonomously absorbs water from the atmosphere and then releases it effortlessly without any external power source. This invention is a promising solution for sustainable, freshwater production. (2021-01-18)

USTC makes security analysis and improvement of quantum random number generation
Recently, the research team led by academician GUO Guangcan from the USTC of the Chinese Academy of Sciences has made security analysis and improvement of source independent quantum random number generators with imperfect devices. (2021-01-14)

Columbia engineers first to observe avalanches in nanoparticles
Columbia Engineering researchers report the first nanomaterial that demonstrates ''photon avalanching,'' a process that is unrivaled in its combination of extreme nonlinear optical behavior and efficiency. The realization of photon avalanching in nanoparticle form opens up a host of sought-after applications, from real-time super-resolution optical microscopy, precise temperature and environmental sensing, and infrared light detection, to optical analog-to-digital conversion and quantum sensing. (2021-01-13)

Shine on: Avalanching nanoparticles break barriers to imaging cells in real time
A team of researchers co-led by Berkeley Lab and Columbia University has developed a new material called avalanching nanoparticles that, when used as a microscopic probe, offers a simpler approach to taking high-resolution, real-time snapshots of a cell's inner workings at the nanoscale. (2021-01-13)

Scientists find antibody that blocks dengue virus
The research team used the Advanced Photon Source to confirm an effective antibody that prevents the dengue virus from infecting cells in mice, and may lead to treatments for this and similar diseases. (2021-01-13)

Pivotal discovery in quantum and classical information processing
Researchers have achieved, for the first time, electronically adjustable interactions between microwaves and a phenomenon in certain magnetic materials called spin waves. This could have application in quantum and classical information processing. (2021-01-13)

Researchers develop new one-step process for creating self-assembled metamaterials
A team led by University of Minnesota Twin Cities researchers has discovered a groundbreaking one-step process for creating materials with unique properties, called metamaterials. (2021-01-11)

Researchers realize efficient generation of high-dimensional quantum teleportation
In a study published in Physical Review Letters, the team led by academician GUO Guangcan from University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS) made progress in high dimensional quantum teleportation. The researchers demonstrated the teleportation of high-dimensional states in a three-dimensional six-photon system. (2021-01-08)

Page 1 of 25 | 1000 Results
   First   Previous   Next      Last is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to